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LECTURE 1
INTRODUCTION TO STATICS.
EQUILIBRIUM OF A SYSTEM OF CONCURRENT FORCE

The science which treats of the general laws of motion and equilibrium
of material bodies and of the resulting mutual interactions is called
theoretical, or general, mechanics. Theoretical mechanics constitutes one
of the scientific bedrocks of modern engineering.

By motion in mechanics we mean mechanical motion, i.e., any change
in the relative positions of material bodies in space which occurs in the
course of time. By mechanical interaction between bodies is meant such
reciprocal action which changes or tends to change the state of motion or
the shape of the bodies involved (deformation). The physical measure of
such mechanical interaction is called force.

Theoretical mechanics is primarily concerned with the general laws of
motion and equilibrium of material bodies under the action of the forces to
which they are subjected.

According to the nature of the problems treated, mechanics is divided
into statics, kinematics and dynamics. Statics studies the forces and the
conditions of equilibrium of material bodies subjected to the action of
forces. Kinematics deals with the general geometrical properties of the
motion of bodies. Finally, dynamics studies the laws of motion of material
bodies under the action of forces.

1. The subject of statics

Statics 1s the branch of mechanics which studies the laws of
composition of forces and the conditions of equilibrium of material bodies
under the action of forces.

The state of equilibrium or motion of a given body depends on its
mechanical interactions with other bodies, i.e., on the loads, attractions or
repulsions it experience as a result of such interactions. /n mechanics, the
quantitative measure of the mechanical interaction of material bodies is
called force.

Force is a vector quantity. Its action on a body is
characterized by its (1) magnitude, (2) direction, and
(3) point of application.

The line DE along which the force is directed is
called the line of action of the force (see Fig. 1.1).

We shall call any set of forces acting on a rigid




body a force system. We shall also use the following definitions:

1. A body not connected with other bodies and which from any given
position can be displaced in any direction in space is called a free body.

2. If a force system acting on a free rigid body can be replaced by
another force system without disturbing the body’s initial condition of rest
or motion, the two systems are said to be equivalent.

3. If a free rigid body can remain at rest under the action of a force
system, that system is said to be balanced or equivalent to zero.

4. If a given force system is equivalent to a single force, that force is
the resultant of the system. Thus, a resultant is a single force capable of
replacing the action of a system of forces of on a rigid body.

A force equal in magnitude, collinear with, and opposite in direction to
the resultant is called an equilibrant force.

5. Forces acting on rigid body can be divided into two groups: the
external forces and the internal forces. External forces represent the action
of other material bodies on the particles of a given body. Internal forces are
those with which the particles of a given body act on each other.

6. A force applied to one point of body is called a concentrated force.
Forces acting on the points of a given volume or given area of a body are
called distributed forces.

2. Fundamental principles

1st Principle. A free rigid body subjected to the action of two forces
can be equilibrium if, and only if, the two forces are
equal in magnitude (¥,=F3,), collinear, and opposite
in direction. (Fig. 1.2)

2nd Principle. The action of a given force
system on a rigid body remains unchanged if
another balanced force system is added to, or
subtracted from, the original system.

Corollary of the 1st and 2nd Principles. The Fig. 1.2
point of application of a force acting on a rigid body
can be transferred to any other point on the line of action of the force
without altering its effect.

Thus, the vector denoting force F can be regarded as applied at any
point along the line of action (such a vector is called a sliding vector).

3rd Principle (the Parallelogram Law). Two forces applied at one
point of a body have as their resultant a force applied at the same point and




represented by the diagonal of parallelogram constructed with the two
given forces as its sides. -'
4th Principle. To any action of one material
body on another there is always an equal and F'
oppositely directed reaction. (Fig. 1.3) /o
Sth Principle. (Principle of Solidification). \¢~ =
If a freely deformable body subjected to the action Fig. 1.3
of a force system is in equilibrium, the state of
equilibrium will not be disturbed if the body solidities (becomes rigid).

3. Constraints and their reactions

As has been defined above, a body not connected with other bodies
and capable of displacement in any direction is called a free body (e.g., a
balloon floating air). A body whose displacement in space is restricted by
other bodies, either connected to or in contact with it, is called a
constrained body. We shall call a constraint anything that restricts the
displacement of a given body in space.

A body acted upon by a force or forces whose displacement is
restricted by a constraint acts on that constraint with a force which is
customarily called the load or pressure acting on the constraint. At the same
time, according to the 4™ principle, the constraint reacts with a force of
same magnitude and opposite sense. The force with which a constraint acts
on a body, thereby restricting its displacement, is called the force of
reaction of the constraint (force of constraint) or simply the reaction of the
constraint.

Some common types of constraints:
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1. Smooth plane (surface) or support
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2. String 3. Pin-type rod
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4. Fixed pin 5. Pin or roller support
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6. Fixed support (rigid clamp or
embedding)

7. Cylindrical pin
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8. Ball-and-socket joint 9. Step bearing

4. Equilibrium of a system of concurrent force

For a system of concurrent forces acting on a body to be in equilibrium
it is necessary and sufficient for the resultant of the forces to be zero. The
conditions which the forces themselves must satisfy can be expressed either
in graphical or in analytical form.

Graphical Condition of Equilibrium. Since the resultant R of a
system of concurrent forces is defined as the closing side of a force
polygon constructed with the given forces, it follows that R can be zero
only if the terminal point of the last force of the polygon coincides with the
initial point of the first force. i.e., if polygon is closed.

Thus, for a system of concurrent forces to be in equilibrium it in
necessary and sufficient for the force polygon drawn with these forces to be
closed.

Analytical Conditions of Equilibrium. Analytically the resultant of a
system of concurrent forces is determined by the formula



R=\|R+R’ +R’ (1.1)

As the expression under the radical is a sum of positive components, R
can be zero only if simultaneously R,=0, R,=0, R.=0, i.e., when the forces
acting on the body satisfy the equations

> F.=0, Y F, =0, Y F_=0. (1.2)
k k k

This equation express the conditions of equilibrium in analytical form:
The necessary and sufficient condition for the equilibrium of a three-
dimensional system of concurrent forces is that the sums of the projections
of all the forces on each of three coordinate axes must separately vanish.

If all the concurrent forces acting on a body lie in one plane, they form
a coplanar system of concurrent forces. Obviously, for such a force system
only two equations are required to express the conditions of equilibrium:

;Fkx:o, ;Fky:O. (1.3)

Eng. (2) and (3) also express the necessary conditions (or equations) of
equilibrium of a free rigid body subjected to the action of concurrent
forces.

The Theorem of Three Forces. The following theorem will often be
found useful in solving problems of statics: If a free rigid body remains in
equilibrium under the action of three nonparallel coplanar forces, the lines
of action of those forces intersect at one point.

LECTURE 2
CONDITIONS FOR THE EQUILIBRIUM OF A COPLANAR
FORCE SYSTEM
1. Moment of force about a point

Consider a force F applied at 8"WE

a point 4 of a rigid body (Fig. 2.1)
which tends to rotate the body
about a point O. The
perpendicular distance # from O
to the line of action of F is called
the moment arm of force F about
the centre O.

The moment of a force F



about a centre O is defined as the product of the force magnitude and the
length of the moment arm taken with appropriate sign.

We shall denote the moment of a force F about a centre O by the
symbol m(F) . Thus,

m,(F)=+Fh. 2.1)

We shall call a moment positive if the applied force tends to rotate the
body counterclockwise, and negative if it tends to rotate the body
clockwise. Thus, the sign of the moment of the force F about O is (+) in
Fig. 2.1a, and (-) in Fig. 2.1b. If the arm is measured in metres, the
moment of the force is measured in newton-metres (Nm).

Note the following properties of the moment of the force:

(1) The moment of a force does not change if the point of application
of the force is transferred along its line of action.

(2) The moment of force about a centre O can be zero only if the force
is zero or if its line of action passes through O (i.e., the moment arm is
ZEro).

Varignon's Theorem of the Moment of a Resultant. 7he moment of
the resultant of a coplanar system of concurrent forces about any centre is
equal to the algebraic sum of the moments of the component forces about
that centre.

2. A Force Couple. Moment of a Couple

A force couple 1s a system of two parallel forces
of same magnitude and opposite sense acting on a
rigid body (Fig. 2.2). Thus, a couple cannot be
replaced or balanced by a single force. For this reason
the properties of the couple as a special mode of
mechanical interaction between bodies are the subject
of a special study.

The plane through the lines of action of both
forces of a couple is called the plane of action of the Fig. 2.2
couple. The perpendicular distance d between the
lines of action of the forces is called the arm of the couple. A couple is
characterized by its moment.

For this case the following definition can be given in analogy with that
of the moment of a force: The moment of a couple is defined as a quantity
equal to the product of the magnitude of one of the forces of the couple and




the perpendicular distance between the forces, taken with the appropriate
sign. Denoting the moment of a couple by the symbol m or M, have:

m,(F)=+Fd . (2.2)

The moment of a couple (as that of a force) is said to be positive if the
action of the couple tends to turn a body counterclockwise, and negative if
clockwise.

Let us prove the following theorem of the moments of the forces of a
couple: The algebraic sum of the moments of the forces of a couple about
any point in its plane of action is independent of the location of that point
and is equal to the moment of the couple.

Before stating the conditions necessary for two couples to be
equivalent let us prove the following theorem: A couple acting on a rigid
body can be replaced by any other couple of the same moment lying in the
same plane without altering the external effect on that body.

3. Theorem of translation of a force

A force acting on a rigid body can be moved parallel to its line of
action to any point of the body, if we add a couple of a moment equal to the
moment of the force about the point to which it is translated.

Consider a force F
applied to a rigid body at a
point A (Fig. 2.3). The action
of the force will not change
if two balanced forces F'=F
and F'=F are applied at any .
point B of the body. The Fig. 2.3
resulting three-force system
consists of a force F, equal to F and applied at B, and a couple (F”,—F) of
moment

m=my(F). (2.3)

Corollary of the theorem of translation of a force. Any system of
coplanar forces acting on a rigid body can be reduced to an arbitrary
centre O in such a way that it is replaced by a single force R equal to the
principal vector of the system and applied at the centre of reduction O and

a single couple of moment My equal to the principal moment of the system
about O.



4. Conditions for the equilibrium of a coplanar force system

For any given coplanar force system to be in equilibrium it is
necessary and sufficient for the following two conditions to be satisfied
simultaneously:

R=0, M, =0, (2.4)

where O is any point in a given plane, as at R=0 the magnitude of M, does
not depend on the location of O.

1. The Basic Equations of Equilibrium. The magnitudes of R and M, are
determined by the equations

R=«/R5+R/f, My=Y my(F,), (2.5)

where

R, = ;Fkx and R, = Zk:Fky (2.6)

But R can be zero only if both R,=0 and R,~0. Hence, Eqgs. (2.5) will be
satisfied if

Y F.=0, Y F, =0, > m,(F)=0. (2.7)

Eqgs. (2.7) express the following analytical conditions of equilibrium: The
necessary and sufficient conditions for the equilibrium of any coplanar
force system are that the sums of the projections of all the forces on each of
the two coordinate axes and the sum of the moments of all the forces about
any point in the plane must separately vanish.

2. The Second Form of the Equations of Equilibrium: The necessary
and sufficient conditions for the equilibrium of any coplanar force system
are that the sums of the moments of all the forces about any two points A
and B and the sum of the projections of all the forces on any axis Ox not
perpendicular to AB must separately vanish:

Y F.=0, > m,(F)=0, > my(F)=0. (2.8)

3. The Third Form of the Equations of Equilibrium (the Equations of
Three Moments): The necessary and sufficient conditions for the
equilibrium of any coplanar force system are that the sums of the moments
of all the forces about any three non-collinear points A, B, C must
separately vanish:



> m,(F)=0, > my(F)=0, > m.(F)=0. (2.9)

5. Equilibrium of a coplanar system of parallel force

If all the forces acting on a body are parallel (Fig. 2.4), we can take
axis x of a coordinate system perpendicular to them and -

axis y parallel to them. Then the x projections of all the
forces will be zero, and the first one of Egs. (2.8)
becomes an identity 0 = 0. Hence, for parallel forces
we have two equations of equilibrium:

D F, =0, > m,(F,)=0, (2.10)

where the y axis is parallel to the forces.
Another form of the conditions for the equilibrium
of parallel forces derived from Egs. (2.9) is:

> m(F)=0, > my(F,)=0. (2.11)

The points 4 and B should not lie on a straight line parallel to the given
forces.

LECTURE 3
EQUILIBRIUM OF SYSTEMS OF BODIES
1. Distributed forces

In engineering problems we often have to deal with loads distributed
over an area according to a known mathematical law. Let us examine some

simple cases of distributed coplanar forces. = a =

A plane system of distributed forces is ||| IR P
characterized by the load per unit length of the line 4 7
of application, which is called the intensity q. The
dimension of intensity is newtons per metre (N/m). Y'

(1) Forces Uniformly Distributed Along a Fig. 3.1

Straight Line (Fig. 3.1). The intensity g of such a
system is a constant quantity. In solving problems of statics such a force
system can be replaced by its resultant Q of magnitude

O=aq. (3.1

10



applied at the middle of AB.
(2) Forces Distributed Along a Straight Line According to a

Linear Law (Fig. 3.2). An example of such a load 1S e & ———>ir
the pressure of water against a dam, which drops m :
from a maximum at the bottom to zero at the \ v
surface. For such forces the intensity ¢ varies from 4 .z 0
zero to g,,. The resultant Q is determined in the same J
manner as the resultant of the gravity forces acting oy
on a homogeneous triangular lamina ABC. As the Fig. 3.2
weight of a homogeneous lamina is proportional to
its area, the magnitude of Q is

0= laqm : (3.2)

2
and is applied at a point at a distance of a/3 from side BC of triangle ABC.

2. Problems statically determinate and statically indeterminate

In problems where the equilibrium of constrained rigid bodies is
considered, the reactions of the constraints are unknown quantities. Their
number depends on the number and type of the constraints. A problem of
statics can be solved only if the number of unknown reactions is not greater
than number of equilibrium equations in which they are present. Such
problem are called statically determinate, and the corresponding systems of
bodies are called statically determinate systems.

Problems in which the number of unknown reactions of the constraints
1s greater than number of equilibrium equations in which they are called
statically indeterminate, and the corresponding systems of bodies are called
statically indeterminate systems.

3. Equilibrium of systems of bodies

In many cases the static solution of engineering structures is reduced to
an investigation of the conditions for the equilibrium of systems of
connected bodies. We shall call the constraints connecting the parts of a
given structure internal, as opposed to external constraints which connect a
given structure with other bodies (e. g., the supports of a bridge).

If a structure remains rigid after the external constraints (supports) are
removed, the problems of statics are solved for it as for a rigid body.

11



However, an engineering structure may not
necessarily remain rigid when the external
constraints are removed. An example of such a
structure is the three-pin arch in Fig. 3.3. If %
supports 4 and B are removed the arch is no g _____
longer rigid, for its parts can turn about pin C. P g P A

According to the principle of solidification, Fig. 3.3
for a system of forces acting on such a structure
to be in equilibrium it must satisfy the conditions of equilibrium for a rigid
body. It was pointed out, though, that these conditions, while necessary,
were not sufficient, and therefore not all the unknown quantities could be
determined from them. In order to solve such a problem it is necessary to
examine additionally the equilibrium of one or several parts on the given
structure.

For example, for the forces acting on the three-pin arch in Fig. 68 we
have three equations with four unknown quantities, X, Y,, X3, Y. By
investigating the conditions for the equilibrium of the left- or right-hand
members of the arch we obtain three more equations with two more
unknown quantities, X¢ and Y (not shown in Fig. 3.3). Solving the system
of six equations we can determine all six unknown quantities.

Another method of solving such problems is to divide a structure into
separate bodies and write the equilibrium equations for each as for a free
body. The reactions of the internal constraints will constitute pairs of forces
equal in magnitude and opposite in sense. For a structure of n bodies, each
of which is subjected to the action of a coplanar force system, we thus have
3n equations from which we may determine 3z unknown quantities (in
other force systems the number of equations is, of course, different). If the
number of unknown quantities is greater than the number of equations, the
problem is statically indeterminate.

A

LECTURE 4
FRICTION
1. Laws of static friction

We know from experience that when two bodies tend to slide on each
other, a resisting force appears at their surface of contact which opposes
their relative motion. This force is called sliding friction.

Friction is due primarily to minute irregularities on the contacting
surfaces, which resist their relative motion, and to forces of adhesion
between contacting surfaces. A detailed examination of the nature of

12



friction is a complex physic-mechanical problem lying beyond the scope of
theoretical mechanics.

Engineering calculations are based on several general laws deduced
from experimental evidence, which reflect the principal features of friction
with an accuracy sufficient for practical purposes. These laws, the laws of
sliding friction, can be formulated as follows:

(1) When two bodies tend to slide on each other, a frictional force is
developed at the surface of contact, the magnitude of which can have any
value from zero to a maximum value F; which is called /imiting friction, or
friction of impending motion.

Frictional force is opposite in direction to the force which tends to
move a body.

(2) Limiting friction is equal in magnitude to the product of the
coefficient of static friction (or friction of rest) f, and the normal pressure
or normal reaction N:

F =fN. (4.1)

The coefficient of static friction f; is a dimensionless quantity which is
determined experimentally and depends on the material of the contacting
bodies and the conditions of the surfaces (their finish, temperature,
humidity, lubrication, etc.).

(3) Within fairly broad limits, the value of limiting friction does not
depend on the area of the surface of contact.
Taken together, the first and second laws state that for conditions of
equilibrium the static friction (adhesive force) F < F) or

F<fN. (4.2)
The following table offers an idea of the values of the coefficient of
static friction for various materials:

Wood on wood............. 0.4t00.7
Metal on metal............. 0.15t0 0.25
Steelonice................. 0.027

For more detailed information the student is invited to consult
engineering hand books.

The foregoing refers to sliding friction of rest. When motion occurs,
the frictional force is directed opposite to the motion and equals the product
of the coefficient of kinetic, or sliding, friction and the normal pressure:

F=/fN. (4.3)
The coefficient of kinetic friction f is also a dimensionless quantity
which is determined experimentally. The value of /' depends not only on the
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material and conditions of the contacting surfaces but also, to some degree,
on the relative velocity of the bodies. In most cases the value of f at first
decreases with velocity and then attains a practically constant value.

2. Reactions of Rough Constraints. Angle of Friction

Up till now, in solving problems of statics, we neglected friction and
regarded the surfaces of constraints as smooth and their reactions as normal
to the surface. The reactions of real (rough) constraints consist of two
components: the normal reaction N and the frictional force F perpendicular
to it. Consequently, the total reaction R forms an R
angle with the normal to the surface. As the friction “°¢
increases from zero to F, force R changes from N to
R, its angle with the normal increasing from zero to
a maximum value @, (Fig. 4.1). The maximum angle £
¢@o which the total reaction of a rough support makes 7.
with the normal to the surface is called the angle of
Static friction, or angle of repose.

From the diagram we have:

F
tg o, = F] (4.4)

Since F~=f,N, we have the following relation between the angle of
friction and the coefficient of friction:

tg @, = fo- (4.5)

When a system is in equilibrium the total reaction
R can pass anywhere within the angle of friction,
depending on the applied forces. When motion
impends, the angle between the reaction and the
normal is (.

If to a body lying on a rough surface is applied a
force P making an angle a with the normal (Fig. 4.2),
the body will move only if the shearing force P
sinais greater than F=foPcos a (neglecting the weight of the body and
considering N=Pcos a). But the inequality Psin a>foPcos a, where fy=tg @,
is satisfied only if tg a>tg @, 1.e., if a>@y. Consequently, if angle a is less
than @, the body will remain at rest no matter how great the applied force.
This explains the well-known phenomena of wedging and self-locking.
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3. Equilibrium with friction

Examination of the conditions for the equilibrium of a body taking
friction into account is usually limited to a consideration of the conditions
when motion is impending and the frictional force acquires its maximum
value F;. For the analytical solution of problems the reaction of a rough
constraint is denoted by its two components N and F,, where F~=f,N. The
known equations of static equilibrium are then written, substituting f,N for
F, and solved for the required values.

If the problem requires that all possible positions of equilibrium be
determined, it is sufficient to solve only for the position of impending
motion. Other positions of equilibrium can then be found by reducing the
coefficient of friction f; in the obtained solution to zero.

It is important to note that in positions of equilibrium when motion
does not impend the force of friction F is not equal to F; and its magnitude,
if it 1s required, should be determined from the conditions of equilibrium as
a new unknown quantity.

In graphical solutions it is more convenient to denote the reaction of a
rough constraint by a single force R, which in the position of impending
motion will be inclined at an angle @, to the normal to the surface.

5. Rolling friction and pivot friction

Rolling friction is defined as the resistance offered by a surface to a
body rolling on it.

Consider a roller of radius R and
weight P resting on a rough horizontal
surface (Fig. 4.2a). If we apply to the axle
of the roller a force QO<F), there will be
developed at 4 a frictional force F, equal
in magnitude to Q, which prevents the
roller from slipping on the surface. If the
normal reaction N is also assumed to be
applied at 4, it will balance force P, with
forces Q and F making a couple which turns the roller. If these
assumptions were correct, we could expect the roller to move, howsoever
small the force Q.

Experience tells us however, that this is not the case; for, due to
deformation, the bodies contact over a certain surface 4B (Fig. 4.3b). When
force Q acts, the pressure at 4 decreases and at B increases. As a result, the

Fig. 4.3

15



reaction N i1s shifted in the direction of the action of force Q. As Q
increases, this displacement grows till it reaches a certain limit k. Thus, in
the position of impending motion, acting on the roller will be a couple
(Q,F) with a moment Q,R balanced by a couple (N,P) of moment Nk. As
the moments are equal, we have Q,R=Nk, or

k
Q=2N. (4.6)

As long as <, the roller remains at rest; when O>Q; it starts to roll.

The linear quantity £ in Eq. (4.6) is called the coefficient of rolling
friction, or resistance, and is generally measured in metres. The value of k&
depends on the material of the bodies and is determined experimentally.
The following list offers an idea of some typical values of :

Woodonwood............coooiiiiii.n. 0.05 t0 0.08 cm

Mild steel on steel (wheel on rail)......... 005 cm

Hardened steel on steel (ball bearing)..... 0.001 cm

The ratio k&/R for most materials is much less than the coefficient of
static friction fy. That is why in mechanisms rolling parts (wheels, rollers,
ball bearings, etc.) are preferred to sliding parts.

LECTURE 5
EQUILIBRIUM OF AN ARBITRARY FORCE SYSTEM IN SPACE
1. Moment of a force about a point as a vector

Before proceeding with the solution of
problems of statics for force systems in space,
we should elaborate some of the concepts
introduced in the preceding lectures. Let us
begin with the concept of moment of a force.

Thus, the moment of a force F about
center O is equal to the cross product of the
radius vector r=0A, from O to the point of
application A of the force, and the force itself.

M,=0AxF=rxF, (5.1)

2. Moment of a force with respect to an axis

Before proceeding with the solution of problems of statics for any
force system in space we must introduce the concept of moment of a force
about an axis.

16



The moment of a force about an axis is the measure of the tendency of

the force to produce rotation about that z F

axis. Consider a rigid body free to rotate ]

about an axis z (Fig. 5.2). Let a force F EE) =~4%
applied at 4 be acting on the body. Let us & _—-}"\H»_%};;l/— a
now pass a plane xy through point A S

normal to the axis z and let us resolve the ‘\\ sl '
force F into rectangular components F, ZZ- e 4
parallel to the z-axis and F,, in the plane Fig. 5.2

xy (F,, 1s in fact the projection of force F

on the plane xy). Obviously, force F,, being parallel to axis z, cannot turn
the body about that axis (it only tends to translate the body along it). Thus
we find that the total tendency of force F to rotate the body is the same as
that of its component F,,. We conclude, then, that

m (F)=m_(F), (5.2)

where m.(F) denotes the moment of force F with respect to axis z. But the
rotational effect of force F,,, which lies in a plane perpendicular to axis z, is
the product of the magnitude of this force and its distance / from the axis.
The moment of force F,, with respect to point O, where the axis pierces the
plane xy, is the same. Hence,

mz (ny) = mO (ny) H (5.3)
or, by Eq. (5.2),
m_(F)=m,(F,)==%F h, (5.4)

From this we deduce the following definition: The moment of a force
about an axis is an algebraic quantity equal to the moment of the
projection of that force on a plane normal to the axis with respect to the
point of intersection of the axis and the plane.

In determining moments the following special cases should be borne in
mind:

(1) If a force is parallel to an axis, its moment about that axis is zero
(since F,,=0).

(2) If the line of action of a force intersects with the axis, its moment
with respect to that axis is zero (since 4=0).

Combining the two cases, we conclude that the moment of a force with
respect to an axis is zero if the force and the axis are coplanar.

(3) If a force is perpendicular to an axis, its moment about that axis is
equal to the product of the force magnitude and the perpendicular distance
from the force to the axis.
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Varignon's Theorem: if a given force system has a resultant, the
moment of that resultant with respect to any axis is equal to the algebraic
sum of the moments of the component forces with respect to the same axis

3. Reduction of a force system in space to a given centre

We have thus proved the
following  theorem:  Any
system of forces acting on a
rigid body can be reduced to
an arbitrary centre O and
replaced by a single force R,
equal to the principal vector
of the system applied at the
centre of reduction, and a Fig. 5.3
couple with a moment My,
equal to the principal moment of the system with respect to O (Fig. 5.3).

R=>F, M,=> m,(F), (5.5)

4. Conditions of equilibrium of an arbitrary force system in space

Like a coplanar force system, any force system in space can be
reduced to a point O and replaced by a resultant force R and couple of
moment My, [the values of R and M, are determined from Egs. (5.5)].
Reasoning we come to the conclusion that the necessary and sufficient
conditions for the given system of forces to be in equilibrium are that R=0
and M=0. But vectors R and My, can be zero only if all their projections
on the coordinate axes are zero, i.e., when R,=R,~=R.=0 and M,=M,=M.=0,
or when the acting forces satisfy the conditions

> F.=0, > F =0, > F_=0,
k k k
;mxa«‘k):o, ;mymk):o, ;mz(Fk)=o.

Thus, the necessary and sufficient conditions for the equilibrium of any
force system in space are that the sums of the projections of all the forces
on each of the three coordinate axes and the sums of the moments of all the
forces about those axes must separately vanish.

(5.6)
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5. The case of parallel forces

If all the forces acting on a body are parallel,
the coordinate axes can be chosen so that the axis z
is parallel to the forces (Fig. 5.4). Then the x and y
projections of all the forces will be zero, their
moments about axis z will be zero, and the Egs.
(5.6) will be reduced to three conditions of
equilibrium:

Y F.=0, > m(F)=0, > m(F)=0

The other equations will turn into identities 0 = 0.

Thus, the necessary and sufficient conditions for the equilibrium of a
system of parallel forces in space are that the sum of the projections of all
the forces on the coordinate axis parallel to the forces and, the sums of the
moments of all the forces about the other two coordinate axes must
separately vanish.

LECTURE 6
KINEMATICS OF A PARTICLE
1. Introduction to kinematics

Kinematics is that part of the theoretical mechanics that deals with the
study of the mechanical motion without to consider the forces and the
masses of the bodies in motion, namely studies the geometry of the motion.
We remind that through mechanical motion we understand the changing
the position of bodies (or parts from bodies) with respect to other bodies
considered as reference systems.

In the kinematics we shall have to solve generally two problems: to
determine the position of the particle (or of the body) in each instant of the
motion, and to know how moves the particle (or the body).

For to define the position of the particle we can use the vector method
of describing motion (used in theoretical demonstrations generally),
coordinate method of describing motion and natural method of describing
motion.

For to define how the motion is made we shall introduced two vector
notions: velocity and acceleration.

2. Method of describing motion of a particle
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Vector method of describing motion. In
the first case is used the radius vector r, that in
absolute motion is represented with respect to a
fixed point (Fig. 6.1).

Because the particle is in motion (changes
its potion in time) the position vector is a
function of time:

r=r(t) (6.1)

This function of time, for represents a real motion will meet the
following conditions: it is continuous (the particle cannot make
instantaneous jumps), it is uniformly (the particle cannot have more
positions simultaneously) and it is derivable.

Coordinate method of describing motion. If we
want to express the position of the particle in scalar way '

)
|

we know that, with respect to a reference system, for
example the Cartesian reference system (Fig. 6.2), the
position of the particle may be expressed using three
coordinates (three scalar position parameters). These
coordinates are functions of time also having the same
conditions as the position vector:

x=x(t), y=y@), z=:z(1). (6.2)

It is obviously that between the vector and the scalar expression of the
potion we have the relation:

r(t) = x(Ok + y(©)j+ z(HK . (6.3)

Natural method of describing motion. The position of the particle
can be expressed in another way also: we define the
curved line (C) on which moves the particle and
defines the position of the particle using the distance
on this line with respect to a given position from the
line (Fig. 6.3). The curved line on which the particle
moves is called trajectory or path and by definition it £
is the locus of the successively occupied positions of '~ Fig. 6.3
the particle in motion. Noting that all positions from
the trajectory can be defined using the position vector the trajectory may be
defined also as the locus of the position vector’s peaks.
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If the parameter time has a given value, the position vector or the
coordinates of the particle will be defined an instantaneous position of the
particle (at a given instant). One of the important instantaneous position of
the particle in the study of the motion is the initial position.

3. Velocity and acceleration

Let be a particle P in motion on an any trajectory. At the instant ¢ of
the motion the position of the particle will be defined by the position vector
r(¢). At another instant #;:

t,=t+At
the position of the particle will be defined by the position vector:
r,=r(t)=r(+At)=r+Ar

where Ar is  the
variation of the position
vector in the At interval
of time (Fig. 6.4).

We shall consider
the following vector
quantity defined by
therelation:

Ar

(v)=—

At

This vector is called average velocity. But we see that this vector does

not correctly describe (than in particular cases) the kinds of motion. This

rate, for example, if we consider a circular motion and the interval of time

1s equal to the time necessary to perform an entire circumference then the

average velocity results equal to zero that is not true. Consequently this rate

between the variation of the position vector and the corresponding interval

of time is a feature of the motion only if the interval of time is very small
(tends to zero). In this case we shall obtain the next vector:

Ar dr

0= lim (v = lim = €4

z

Fig. 6.4

This vector is called instantaneous velocity (at a given instant) and by
definition is: the first derivative with respect to time of the position vector.
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For to simplify we shall mark the first derivative with respect to time
with a point above the derivate vector:

V=r.

For to simplify the names in the problems we shall call the
instantaneous velocity simply velocity. We shall use also the name
instantaneous velocity but for the velocity at a given instant of the motion.

Consider now the particle in the two positions corresponding to the
two instants: ¢ and ¢;,. Because the velocities in these two positions are
different, it is necessary, for to know the kind of motion of the particle to
introduce a new notion that defines the variation of the velocity (Fig. 6.5).
We shall bring the two velocities from the two instants in a convenient
point. The variation of the velocity (as vector)
in the interval of time is marked:

Av
(a)=—
At
that is called average acceleration. Because
this vector does not describe well enough the
kind of motion we shall define another notion
decreasing the interval of time, finally
obtaining the instantaneous acceleration:
20 e e
a:lim<a>:hm@:@:d—f:n:r. (6.5)
At—0 A0 At dt dt
Consequently the instantaneous acceleration is the first derivative ,
with respect to time, of the velocity of the particle or the second derivative,
with respect to time, of the position vector of the particle.
As we can see the second derivative with respect to time is marked
with two points above the corresponding vector.

4. Determination of the velocity and acceleration of a particle when its
motion is described by the coordinate method

As we have seen in the previous sections the absolute motion of a
particle can be studied using different reference systems. The simplest
reference system is the Cartesian system of reference considered as a fixed
system.
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Consider a particle in motion (absolute motion) and a fixed Cartesian
system of reference Oxyz.

The main property of this system can be expressed in the following
way:

di _dj_dk _

dt dt dt

The position of the particle may be defined in scalar way using the
three coordinates:

x=x(t), y=y@), z=z(),

that are functions of time because the particle is in motion (change its
position) with respect to the fixed reference system.

These coordinates are called the laws of motion in Cartesian
coordinates or parametric equations of the motion in Cartesian
coordinates.

The position of the particle can be expressed also using the position
vector with respect to the origin of the reference system:

r=r(t).

Between this vector and the Cartesian coordinates we may write the
well-known relation:

r(t) = x(Ok + y(©)j+ z(OK .

By eliminating time t from the equations of motion we can obtain the
equation of the path in the usual form, i.e., in the form of a relation between
the particle’s coordinates.

For to know the kind of motion we shall express the velocity of the
particle. Using the definition of the instantaneous velocity we find:

v(t):@i+d—yj+%k.
d dt” dt

This means that the projections of the velocity on the axes of the
reference system are:

dx dy dz

v.()=—, v ()=—, v.()=—,

() 7 (0 4 (1) 7
from which we obtain, using the well-known relations, the magnitude and

the direction of the velocity in Cartesian coordinates:
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L L L
_ 2 2 2 _ _ Yy _
v=,/v; +V) + U, cosocu——U", cosBU——U , COSy, = UZ,

2 2 2.
cos” o, +cos B, +cos y, =1.

We remark that the projections of the velocity on the fixed axes are
equal to the first derivatives, with respect to time, of the corresponding
coordinates.

Also we remark that in this reference system we have not any
properties of the velocity resulted from the relations.

The second vector defining the kind of motion is the acceleration.
From definition we have:

dv

a=—

dt
or removing function the Cartesian coordinates we obtain finally:
d’x., d’y. d’z

a(t)=—i+ +

« ac a7 as
namely we have the following projections on the axes, magnitude and

direction in Cartesian coordinates:

d’x d’y d’z

aO=—7> aO="5, aO)=—7

a a
[ 2 2 2 _a _ % _ 4,
a=,la;+a,+a:, cosoca——a , cosBa——a , COsy, = o

5. Determination of the velocity and acceleration of a particle when its
motion is described by the natural method. Tangential and normal
accelerations of a particle

k.

This reference system, called natural system also, is used only the
cases when is known the trajectory of the particle.

Consider a particle P in motion on a known trajectory (C).

We shall consider the following reference system:

- The origin of the system is taken in the point representing the
particle;

- The axis Pt, called tangent axis, will be tangent to the trajectory in
point P and with the positive sense in the sense of motion;
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- The axis Pn, called normal axis, will have
the direction of the principal normal to the 0+ .4 A,
trajectory in point P. The positive sense of this = S 4s
axis will be directed toward the center of \C‘//‘_SI
curvature of the trajectory; Fig. 6.6

- The axis Pb, called binormal axis, is
perpendicular on the previous two axes and the positive sense is considered
so that the three axes to make a right hand system.

Because the particle is located in the origin of this system and the
names of the axes are not used to define coordinates, we shall use the
names of these axes for the names of the corresponding unit vectors.

The position of the particle (because we know the trajectory of it) may
be defined using one scalar quantity:

s=s(1),

called curvilinear coordinate or natural coordinate and representing the
space performed on the trajectory measured from a convenient position
(generally the initial position) to the current position. Because we study the
absolute motion of the particle, for to define the velocity and acceleration
we need to use the position vector with respect to a fixed point O.

For the velocity of the particle we have:

v,=v, =0, v =xv,

T

Let us see how the velocity of particle can be determined. If in a time
interval A¢ = #,-t a particle moves from position M to position M; (Fig. 6.6),
the displacement along the arc of the path being As = s;-s, the numerical
value of the average velocity will be:

As
(o) =42
At
Passing to the limit, we obtain the numerical value of the instantaneous
velocity for a given time ¢

L= lim<u>: 1im£:§, (6.6)
At—0 A0 A dt
Thus, the numerical value of the instantaneous velocity of a particle is
equal to the first derivative of the dispacement (of the arc coordinate) s of
the particle with respect to time.
The velocity vector is fangent to the path, the latter assumed to be
known.
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Eq. (6.6) gives the numerical (algebraic) value of velocity, i.e., a
quantity with a sign such that the sign of v is the same as the sign of As
always At > 0. As the numerical value of the velocity vector differs from its
magnitude only in sign, we shall denote both quantities by the same symbol
v; this gives rise to practically no misunderstandings. Whenever it is
necessary to stress that we are dealing with the magnitude of the velocity
we shall denote it by the symbol |v|.

It was shown that the accelerations a of a particle lies in the osculating
plane, i.e., plane Mtn, hence the projection of vector a on the binormal is
zero (a, = 0).

Let us calculate the projections of a on the other two axes. Let the
particle occupy a position M and have a velocity v at any time ¢, and at time
t1 =t + At let it occupy a position M; and have a velocity v ;. Then, by
virtue of the definition,

. Av . v —v
a=lim—=1im }
At—0 At At—0 Af

Let us now express this equation in
terms of the projections of the vectors on ~
the axes Mt and Mn through point M (see M
Fig. 6.7). From the theorem of the ; L
projection of a vector sum (or difference)
on an axis we obtain:

.V, —VL .V, —VL
a,=lim———= g =lim—*—-=.
A—0 At A0 At

Noting that projections of a vector on parallel axes are equal, draw
through point M, axes Mt' and Mn' parallel to Mt and Mn, respectively, and
denote the angle between the direction of vector v, and the tangent Mt by
the symbol A¢. This angle between the tangents to the curve at points M
and M, is called the angle of contiguity.

It will be recalled that the limit of the ratio of the angle of contiguity
Ao to the arc MM,=As defines the curvature k& of the curve at point M. As
the curvature is the inverse of the radius of curvature p at M, we have:

m .
As—0 At p

From the diagram in Fig. 6.7, we see that the projections of vectors v
and v; on the axes Mt and Mn are*
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L, =V, v, =0,
V,, =V, COSAQ, L,, =V, sin AQ,
where v and v, are the numerical values of the velocity of the particle at
instants ¢ and ¢;. Hence,
L, COSAQ — v sin A@

a, = lim , a,=lmuy, .
At—0 At At—0 At

It will be noted that when A7—0, point M; approaches M indefinitely,
and simultaneously A¢—0, As—0, and v;—.
Hence, taking into account that

limcosAp =1, lirr%) SINAQ =AQ.
t—>

At—0

we obtain for a, the expression

We shall transform the right-hand side of the equation for w, in such a
way so that it includes ratios with known limits. For the purpose,
multiplying the numerator and denominator of the fraction under the limit
sign by AgAs, we find:

ApAs VU

. A
a, = limv, =limy,——=—.
At—0 At A—0 © As At p

Finally we obtain

L (6.6)

dt p

We have thus proved that the projection of the acceleration of a
particle on the tangent to the path is equal to the first derivative of the
numerical value of the velocity, or the second derivative of the
displacement (the arc coordinate) s, with respect to time; the projection of
the acceleration on the principal normal is equal to the second power of
the velocity divided by the radius of curvature of the path at the given point
of the curve, the projection of the
acceleration on the binormal is zero
(a,=0). This is an important theorem
of particle kinematics.
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Lay off vectors a; and a,, 1.e., the normal and tangential components of
the acceleration, along the tangent Mt and the principal normal Mn,
respectively (Fig. 6.8). The component a, is always directed along the
inward normal, as @,>0, while the component a, can be directed either in
the positive or in the negative direction of the axis Mz, depending on the
sign of the projection a, (see Figs. 6.8a and b).

The acceleration vector a is the diagonal of a parallelogram
constructed with the components a, and a, as its sides. As the components
are mutually perpendicular, the magnitude of vector a is given by the
equation:

a=.lal+a :\/(@j +(U—2j . (6.7)
dt p

LECTURE 7
TRANSLATION AND ROTATIONAL MOTION OF A RIGID BODY
1. Translation motion

In kinematics, as in statics, we shall regard all solids as rigid bodies,
1.e., we shall assume that the distance between any two points of a body
remains the same during the whole period of motion.

Problems of kinematics of rigid bodies are basically of two types: (1)
definition of the motion and analysis of the kinematic characteristics of the
motion of a body as a whole; (2) analysis of the
motion of every point of the body in particular.

We shall begin with the consideration of
the motion of translation of a rigid body.

Translation of a rigid body is such a
motion in which any straight line through the Fig. 7.1
body remains continually parallel to itself.

(Fig. 7.1)

The properties of translational motion are defined by the following
theorem: In translational motion, all the particles of a body move along
similar paths (which will coincide if
superimposed) and have at any instant the
same velocity and acceleration.

It follows from the theorem that the
translational motion of a rigid body is fully
described by the motion of any point




belonging to it. Thus, the analysis of translational motion of a rigid body is
reduced to the methods of particle kinematics examined before.

The common velocity v of all the points of a body in translational
motion is called the velocity of translation, and the common acceleration W
is called the acceleration of translation. Vectors v and a can, obviously, be
shown as applied at any point of the body.

2. Rotational motion of a rigid body.
Angular velocity and angular acceleration

Rotation of a rigid body is such a motion in which there are always
two points of the body (or body extended) which remain motionless (see
Fig. 7.3). The line AB through these fixed
points is called the axis of rotation.

To determine the position of a rotating
body, let us pass two planes through the axis
of rotation Az: plane /, which is fixed, and
plane /I through the rotating body and rotating
with it (Fig. 7.3). The position of the body at
any instant will be fully specified by the angle
¢ between the two planes, taken with the
appropriate sign, which we shall call the angle
of rotation of the body. We shall consider the
angle positive if it 1s laid off counterclockwise
from the fixed plane by an observer looking
from the positive end of axis 4z, and negative
if it 1s laid off clockwise. Angle ¢ is always measured in radians.

The position of a body at any instant is completely specified if we
know the angle ¢ as a function of time ¢, i.e.,

¢ =0(7). (7.1)

Eq. (7.1) describes the rotational motion of a rigid body.

The principal kinematic characteristics of the rotation of a rigid body
are its angular velocity o and angular acceleration «.

The angular velocity of a body at a given time is equal in magnitude to
the first derivative of the angle of rotation with respect to time.

do
0=—. 7.2
7 (7.2)
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Eq. (7.2) also shows that the value of ® is equal to the ratio of the
infinitesimal angle of rotation do to the corresponding time interval df. The
sign of ¢ specifies the direction of the rotation. It will be noticed that ®>0
when the rotation 1s counterclockwise, and ®<0 when the rotation 1is
clockwise. The dimension of angular velocity, if the time is measured in
seconds, 1s

_radian _
[o]= sec '

as the radian is a dimensionless unit.

The angular velocity of a body can be denoted by a vector @ of
magnitude o along the axis of rotation of the body in the direction from
which the rotation is seen as counterclockwise (see Fig. 7.4). Such a vector
simultaneously gives the magnitude of the angular velocity, the axis of
rotation, and the sense of rotation about that axis.

The angular acceleration of a body at a given time is equal in
magnitude to the first derivative of the angular velocity, or the second
derivative of the angular displacement, of the body with respect to time.
_do

dt

The dimension of angular acceleration is [€] = s™.

If the angular velocity increases in magnitude, the rotation is
accelerated, if 1t decreases, the rotation is
retarded. 1t will be readily noticed that the
rotation is accelerated when ® and ¢ are of
the same sign, and retarded when they are
of different sign.

By analogy with angular velocity, the
angular acceleration of a body can be :
denoted by a vector € along the axis of Fig. 7.4
rotation. The direction of € coincides with
that of @ when the rotation is accelerated (Fig. 7.4a), and is of opposite
sense when the rotation is retarded (Fig. 7.4b).

g (7.3)

3. Velocities and accelerations of the points of a rotating body
Consider a point M of a rigid body at a distance /# from the axis of
rotation Az (Fig. 7.3). When the body rotates, point M describes a circle of

radius % in a plane perpendicular to the axis of rotation with its centre C on
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that axis. If in time df the body makes an infinitesimal displacement
through an angle do, point M will have made a very small displacement ds
= h do along its path. The velocity of the point is the ratio of ds to dt, i.e.,

L L hﬂ,
dt dt
or
v=ho. (7.4)

This velocity v is called the linear, or circular, velocity of the point M
(not to be confused with its angular velocity).

Thus, the linear velocity of a point belonging to
a rotating body is equal to the product of the
angular velocity of that body and the distance of the
point from the axis of rotation. The linear velocity is
tangent to the circle described by point M, or
perpendicular to the plane through the axis of rotation and the point M.

In order to determine the acceleration of point M, we apply equations

Fig. 7.5

dv v’
_ g =2

a=—, a, :
dt p

In our case, p=h. Substituting the expression for v from Eq. (7.4), we
obtain

do ho’
a=h—, a, = ,
dt h
and finally
a.=he, a,=ho. (7.5)

The tangential acceleration a;
is tangent to the path (in the
direction of the rotation if it is
accelerated and in the reverse
direction if it is retarded); the
normal acceleration a, is always
directed along the radius / towards
the axis of rotation (Fig. 7.6a).

The total of point M is

a:\/af +a =1 + o’ ,
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or

a=hle’ +o'. (7.6)

LECTURE 8
PLANE MOTION OF A RIGID BODY
1. Equations of plane motion.
Resolution of motion into translation and rotation

Plane motion of a rigid body is such motion in which all its points
move parallel to a fixed plane P (Fig.
8.1). Many machine parts have plane
motion, for example, a wheel running on
a straight track or the connecting rod of
a reciprocating engine. Rotation is, in g \

&

fact, a special case of plane motion. \\f////

Let as consider the section § of a A 5 M
body produced by passing any plane Oxy T
parallel to a fixed plane P (see Fig. 8.1). Fig. 8.1

All the points of the body belonging to

line MM' normal to plane P move in the same
way. Therefore, in investigating plane motion
it is sufficient to investigate the motion of
section S of that body in the plane Oxy. In this
book we shall always take the plane Oxy
parallel to the page and represent a body by its
section S. z,

The position of section S in plane Oxy is Fig. 8.2
completely specified by the position of any
line AB in this section (Fig. 8.2). The position of the line 4B may be
specified by the coordinates x, and y, of point A and the angle ¢ between
an arbitrary line AB in section S and axis x.

The point 4 chosen to define the position of section S is called the
pole. As the body moves, the quantities x4, 4 and ¢ will change and the
motion of the body, i.e., its position in space at any moment of time, will be
completely specified if we know.

X =x(0), y,=y0), ¢0=0(). (8.1)
Eqgs.(8.1) are the equations of plane motion of a rigid body.
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We conclude that the plane motion of a rigid body is a combination of
a translation, in which all the points move in the same way as the pole A,
and of a rotation about that pole *.

The principal kinematic characteristics of this type of motion are the
velocity and acceleration of translation, each equal to the velocity and
acceleration of the pole (Vgans = V4, Auans = 84), and the angular velocity ®
and angular acceleration ¢ of the rotation about the pole. The values of
these characteristics can be found for any time ¢ from Egs. (8.1).

In analysing plane motion, we are free to choose any point of the body
as the pole. Let us consider a point C as a
pole instead of 4 and determine the ¥
position of the line CD making an angle
¢; with axis x (Fig. 8.3). The
characteristics  of  the  translatory
component of the motion would have
been different, for in the general case
ve # vy and ac # a4 (otherwise the motion
would be that of pure translation). The g x
characteristics  of  the  rotational Fig. 8.3
component of the motion ® and & remain,
however, the same. For, drawing CB; parallel to 4B, we find that at any
instant of time angle ¢; = ¢ — o, where o = const. Hence

do, do d’¢, _d’¢
di di

>

9
dr*  dr’
or

O =0, & =¢.

Hence, the rotational component of motion does not depend on the
position of the pole.

2. Determination of the velocity of a point of a body

Plane motion of a rigid body is a combination of a translation in which
all points of the body move with the velocity of the pole v, and a rotation
about that pole. Let us show that the velocity of any point M of the body is
the geometrical sum of its velocities
for each component of the motion. y

The position of a point M in
section § of the body is specified with s




reference to the coordinate axes Oxy by the radius vector r =r, + r' (Fig.
8.4), where r is the radius vector of the pole 4, r'=AM is the vector which
specifies the position of point M with reference to the axes Ax'y’ that
perform translational motion together with 4 (the motion of section S with
reference to those axes is the motion about pole 4). Then,

dr dr, dr

L)) .
Moodr dr o dt

In this equation first term is equal to the velocity of pole 4; the second
term is equal to the velocity v,,4 of point M at r, = const., i.e., when 4 is
fixed or, in other words, when the body (or, strictly speaking, its section )
rotates about pole A. 1t thus follows from the preceding equation that

v, =V,+V,,. (8.2)
The velocity of rotation v,,4 of point M about pole 4 is
v, =0oMA4 (v, LMA),

where o is the angular velocity of the rotation of the
body.

Thus, the velocity of any point M of a body is the
geometrical sum of the velocity of any other point 4
taken as the pole and the velocity of rotation of point
M about the pole. The magnitude and direction of the
velocity v,, are found by constructing a parallelogram
(Fig. 8.5).

3. Theorem of the projections of the velocities of Fig. 8.5

two points of a body

The use of Eq. (8.2) to determine the velocities of the points of a body
usually leads to involved computations. However, we can evolve from Eq.
(8.2) several simpler and more convenient methods of determining the
velocity of any point of a body.

One of these methods is given by the theorem: The projections of the
velocities of two points of a rigid body on the Strazght line joining those
points are equal.

Consider any two points 4 and B of a
body. Taking point 4 as the pole (Fig. 8.6)
we have from Eq. (50) vz = vy + vy,
Projecting both members of the equation on




AB and taking into account that vector vg,. is perpendicular to AB, we
obtain:

L, COSOL =V, Cosf. (8.4)

and the theorem is proved. This result offers a simple method of
determining the velocity of any point of a body if the direction of motion of
that point and the velocity of any other point of the same body are known.

LECTURE 9
PLANE MOTION OF A RIGID BODY (continuation)
4. Determination of the velocity of a point of a body using the
instantaneous centre of zero velocity

Another simple and visual method of determining the velocity of any
point of a body performing plane motion is
based on the concept of instantaneous
centre of zero velocity. The instantaneous
centre of zero velocity is a point belonging
to the section S of a body or its extension
which at the given instant is momentarily at
rest.

It will be readily noticed that if a body
1S in non-translational motion, such one and 2
only one point always exists at any instant 7. Fig. 8.7
Let points 4 and B in section S of a body
(Fig. 8.7) have, at time ¢, non-parallel velocities v, and vg. Then point P of
intersection of perpendiculars Aa to vector vy and Bb to vector vg will be
the instantaneous centre of zero velocity, as vp = 0. For, if we assumed that
vp # 0, then, by the theorem of the projections of the velocities of the points
of a body, vector vp would have to be simultaneously perpendicular to AP
(asvy L AP) and to BP (as vz L BP), which is impossible. It also follows
from the theorem that, at the given instant, no other point of section S can
have zero velocity (e.g., for point a, the projection of vz on Ba is not zero
and consequently v, # 0).

If, now, we take a point P as the pole at time ¢, the velocity of point 4
will, by Eq. (8.2), be

V=V, 1V, =0,

as vp = 0. The same result can be obtained for any other point of the body.
Thus, the velocity of any point of a body lying in section S is equal to the
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velocity of its rotation about the instantaneous centre of zero velocity P.
From Egs. (8.2) we have

v, =0P4 (v, LPA),

: (8.5)
v, =0PB (v, LPB), etc.
It also follows from Egs. (8.5) that
Ya_Ys (8.6)
PA PB’

1.e., that the velocity of any point of a body is proportional to its distance
from the instantaneous centre of zero velocity.

These results lead to the following conclusions:

(1) To determine the instantaneous centre of zero velocity, it is
sufficient to know the directions of the velocities v, and vg of any two
points A and B of a section of a body (or their paths); the instantaneous
centre of zero velocity lies at the intersection of the perpendiculars erected
from points 4 and B to their respective velocities, or to the tangents to their
paths.

(2) To determine the velocity of any point of a body, it is necessary to
know the magnitude and direction of the velocity of any point A of that
body and the direction of the velocity of another point B of the same body.
Then, by erecting from points 4 and B perpendiculars to vy and vg we
obtain the instantaneous centre of zero velocity P and, from the direction of
v, the sense of rotation of the body. Next, knowing v,, we can find from
Eq. (54) the velocity vy, of any point M of the body. Vector v, is
perpendicular to PM in the direction of the rotation.

(3) The angular velocity of a body, as can be seen from Eqgs. (8.5), is at
any given instant equal to the ratio of the velocity of any point belonging to
the section S to its distance from the instantaneous centre of zero velocity

P:
=8
PB
Let us evolve another expression for o It follows from Eqgs. (8.2) and
(8.3) that vg, = | Vg — Vy | and vzy = 4B whence
‘DB B DA‘ _ ‘DB + (_DA)‘
AB AB

(8.7)

m=

(8.8)
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When v, = 0 (point 4 is the instantaneous centre of zero velocity), Eq.
(8.8) transforms into Eq. (8.7).

Egs. (8.7) and (56) give the same quantity, since
the rotation of the section S about either point 4 or
point P takes place with the same angular velocity .

Let us consider some special cases of the
instantaneous centre of zero velocity.

(a) If plane motion is performed by a cylinder
rolling without slipping along a fixed cylindrical
surface, the point of contact P (Fig. 8.8) is
momentarily at rest and, consequently, is the
instantaneous centre of zero velocity (vp =0 because
if there is no slipping, the contacting points of both bodies
must have the same velocity, and the second body is _
motionless). An example of such motion is that of a wheel Fig. 8.8
running on a rail.

(b) If the velocities of points 4 and B of the body are parallel to each
other, and AB is not perpendicular to v, (Fig. 8.9) the instantaneous centre
of zero velocity lies in infinity, and the velocities of all points are parallel
to v,. From the theorem of the projections of velocities it follows that
V4€0S0. = VECOSP, 1.€., L = V4; the result is the same for all other points of
the body. Consequently, in this case the velocities of all points of the body
are equal in magnitude and direction at every instant, i.e., the instantaneous
distribution of the velocities of the body is that of translation (this state of
motion is also called instantaneous translation). It will be found from Eq.
(8.8) that the angular velocity o of the body at the given instant is zero.

(c) If the velocities of points 4 and B are parallel and is perpendicular
to vy, the instantaneous centre of zero velocity P can be located by the
construction shown in Fig. 8.10. The validity of this construction follows
from the proportion (8.6). In this case, unlike the previous ones, we have to
know the magnitudes of velocities v, and vp to locate the instantaneous
centre of zero velocity P.

(d) If the velocity vector vz of a point in section S
and the angular velocity ® are known, the position of
the instantaneous centre of zero velocity P, lying on
the perpendicular to vz (see Fig. 8.7), can be
immediately found from Eq. (8.7), which yields
BP = vp/o.
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5. Determination of the acceleration of a point of a body

We shall demonstrate that, like velocity, the acceleration of any point
M of a body in plane motion is composed of its accelerations of translation
and rotation. The location of point M with respect to axes Oxy (see Fig. 8.4)
is specified by the radius vector r =r, + r', where r' = AM. Hence,

N d’r _dr, dv
Mood drt drt
In this equation the quantity first term is the acceleration of the pole 4,

and the second term is the acceleration of point M in its rotation with the
body round 4. Hence,

a,, =a,+a,,. (8.9)

From Egs. (7.5) and (7.6), the acceleration of point M in its rotation
about 4 1s

a,,=MANo" +&* . (8.10)

where ® and ¢ are the angular velocity and angular acceleration of the
body.

Thus, the acceleration of any point M of a body is composed of the
acceleration of any other point taken for the pole and the acceleration of
the point M in its rotation together with the body about that pole. The
magnitude and direction of the acceleration
ay are determined by constructing a
parallelogram (Fig. 8.11).

However, the computation of a, by
means of the parallelogram in Fig. 8.11
makes the solution more difficult, as it
becomes necessary first to calculate the angle
and then the angle between vectors a,,, and a4
Therefore, in problem solutions it is more

convenient to replace vector a,y by its Fig. 8.11
tangental and normal components a, and
a"y., where

a;,, =MAe, a], =MAw. (8.11)

38



Vector a'y, is perpendicular
to AM 1n the direction of the
rotation 1f it is accelerated, and
opposite the rotation if it is
retarded; vector a"y, is always
directed from point M to the pole
A (Fig. 8.12).

Instead of Eq. (8.9) we
obtain

a,, =a,+a,;, +a,,. (8.12)

If pole A4 is in non-rectilinear motion, its acceleration is also composed
of the tangential and normal accelerations, hence

a, =a,+a,+a,, +a,,. (8.13)

the magnitudes of the latter two components being obtained from Eq.
(8.11). Egs. (8.11), (8.12) and (8.13) should be used in solving problems,
first computing the vectors in the right-hand part of the equation and then
finding their geometrical sum or making a graphic construction.

LECTURE 10
PARTICLE DYNAMICS

Dynamics is the section of mechanics which treats of the laws of motion
of material bodies subjected to the action of forces.

The motion of bodies from a purely geometrical point of view was
discussed in kinematics. Unlike kinematics, in dynamics the motion of
bodies is investigated in connection with the acting forces and the inertia of
the material bodies themselves.

The concept of force as a quantity characterising the measure of
mechanical interaction of material bodies was introduced in the course of
statics. But in statics we treated all forces as constant, without considering
the possibility of their changing with time. In real systems, alongside of
constant forces (gravity can generally be regarded as an example of a
constant force), a body is often subjected to the action of variable forces
whose magnitudes and directions change when the body moves. Variable
forces may be the applied (active) forces or the reactions of constraints.

Experience shows that variable forces may depend in some specific
ways on time, on the position of a body, and on its velocity (examples of
dependence on time are furnished by the tractive force of an electric
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locomotive whose rheostat is gradually switched on or off or the force
causing the vibration of the foundation of a motor with a poorly centred
shaft; the Newtonian force of gravitation or the elastic force of a spring
depending on the position of a body; the resistance experienced by a body
moving through air or water depends on the velocity. In dynamics we shall
deal with such forces alongside of constant forces. The laws for the
composition and resolution of variable forces are the same as for constant
forces.

The concept of inertia of bodies arises when we compare the results of
the action of an identical force on different material bodies. Experience
shows that if the same force is applied to two different bodies initially at
rest and free from any other actions, in the most general case the bodies
will travel different distances and acquire different velocities in the same
interval of time.

Inertia is the property of material bodies to resist a change in their
velocity under the action of applied forces. If, for example, the velocity of
one body changes slower than that of another body subjected to the same
force, the former is said to have greater inertia, and vice versa.

The quantitative measure of the inertia of a body is a physical quantity
called the mass of that body. In mechanics mass m is treated as a quantity
which is positive and constant for every body.

In the most general case the motion of a body depends not only on its
total mass and the applied forces; the nature of motion may also depend on
the shape of the body or, more precisely, on the mutual position of its
particles (i.e., on the distribution of mass).

In the initial course of dynamics, so as to neglect the influence of the
shape (distribution of the mass) of a body, the concept of a material point,
or particle is introduced.

A particle is a material body (a body possessing mass) the size of which
can be neglected in investigating its motion.

Actually any body can be treated as a particle when the distances
travelled by its points are very great as compared with the size of the body
itself. For example, in studying the motion of a planet about the sun or
determining the range of an artillery shell, etc., the planet or shell can be
treated as particles. Furthermore, as will be shown in the dynamics of
systems, a body in translational motion can always be considered as a
particle of mass equal to the mass of the whole body. Finally, the parts into
which we shall mentally divide bodies in analysing any of their dynamical
characteristics can also be treated as material points.

Obviously, the investigation of the motion of a single particle should
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precede the investigation of systems of particles, and in particular of rigid
bodies. Accordingly, the course of dynamics is conventionally subdivided
into particle dynamics and the dynamics of systems of particles.

1. The laws of dynamics

The study of dynamics is based on a number of laws generalising the
results of a wide range of experiments and observations of the motions of
bodies—laws which have been verified in the long course of human history.
These laws were first systematised and formulated by Isaac IN ewton in his
classical work Principia Mathematica published in 1687.

The First Law (the Inertia Law), discovered by Galileo in 1638, states:
A particle free from any external influences continues its state of rest or
uniform rectilinear motion, except and so far as it is compelled to change
that state by impressed forces. The motion of a body not subjected to any
force is called motion under no forces, or inertial motion.

The inertia law states one of the basic properties of matter: that of
being always in motion. It establishes the equivalence, for material bodies,
of the states of rest and of motion under no forces. It follows, then, that if
F =0, a particle is at rest or moves with a velocity of constant magnitude
and direction (v = const.); the acceleration of the particle is, evidently, zero
(a=0); if the motion of a particle is not uniform and rectilinear, there must
be some force acting on it.

A frame of reference for which the inertia law is valid is called an
inertial frame (or, conventionally, a fixed frame). Experience shows that,
for our solar system, an inertial frame of reference has its origin in the
centre of the sun and its axes pointed towards the so-called "fixed" stars. In
solving most engineering problems a sufficient degree of accuracy is
obtained by assuming any frame of reference connected with the earth to be
an inertial system.

The Second Law (the Fundamental Law of Dynamics) establishes the
mode in which the velocity of a particle changes under the action of a
force: The product of the mass of a particle and the acceleration imparted
to it by a force is proportional to the acting force; the acceleration takes
place in the direction of the force.

Mathematically this law is expressed by the vector equation

ma=F. (10.1)

The dependence between the magnitudes of the acceleration and the
force is
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ma=F. (10.2)

The second law of dynamics, like the first, is valid only for an inertial
frame. It can be immediately seen from the law that the measure of the
inertia of a particle is its mass, since two different particles subjected to the
action of the same force receive the same acceleration only if their masses
are equal; if their masses are different, the particle with the larger mass
(i.e., the more inert one) will receive a smaller acceleration, and vice versa.

A set of forces acting on a particle can, as we know, be replaced by a
single resultant R equal to the geometrical sum of those forces. In this case
the equation expressing the fundamental law of dynamics acquires the form

ma=>YF,. (10.3)

This result can also be obtained by applying, instead of the
parallelogram principle, the law of independent action of forces, according
to which each of a number of forces acting on a particle imparts to it the
same acceleration as it would have imparted if acting alone.

Weight and Mass. All bodies close to the surface of the earth are
subject to the force of gravity P, equal in magnitude to a body's weight. It
has been established experimentally that under the action of force P all
bodies falling to the earth (from a small height and in vacuo) possess the

same acceleration g; this is known as the acceleration of gravity or of free
fall. Applying Eq. (10.2), for free fall we have

mg=P or m:£. (10.4)
g

Eq. (10.4) gives the body's mass in terms of its weight, and vice versa;
it establishes that a body's weight is the product of its mass and
acceleration of gravity, and its mass is the quotient of its weight divided by
the acceleration of gravity. Weight, like the acceleration of gravity g,
changes with latitude and altitude; mass is a constant for every given body
(or particle).

The Third Law (the Law of Action and Reaction) establishes the
character of mechanical interaction between material bodies. For two
particles it states: Two particles exert on each other forces equal in
magnitude and acting in opposite directions along the straight line
connecting the two particles.

It should be noted that the forces of interaction between free particles
(or bodies) do not form a balanced system, as they act on different objects.
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For example, if a piece of iron and a magnet are placed near each other on a
smooth surface, they will move towards each other under the influence of
their mutual attraction and not remain at rest. Since the magnitude of the
force acting on each body is the same, it follows from the second law of
dynamics that the accelerations of the two bodies will be inversely
proportional to their masses.

The third law of dynamics, which establishes the character of
interaction of material particles, plays an important part in the dynamics of
systems.

3. The problems of dynamics for a free and a constrained particle

The problems of dynamics for a free particle are: (1) knowing the
equation of motion of a particle, determine the force acting on it (the first
problem of dynamics); (2) knowing the forces acting on a particle,
determine its equation of motion (the second, or principal, problem of
dynamics).

Both problems are solved with the help of Eq. (1) or (3), which express
the fundamental law of dynamics, since they give the relation between
acceleration a, i.e., the quantity characterising the motion of a particle, and
the forces acting on it.

In engineering it is often necessary to investigate the constrained
motion of a particle, i.e., cases when constraints attached to a particle
compel it to move along a given fixed surface or curve.

In such cases we shall use, as in statics, the axiom of constraints which
states that any constrained particle can be treated as a free body detached
from its constraints provided the latter is represented by their reactions N.
Then the fundamental law of dynamics for the constrained motion of a
particle takes the form

ma=) F'+N, (10.5)
k

where F%; denotes the applied forces acting on the particle.

For constrained motion, the first problem of dynamics will usually be:
determine the reactions of the constraints acting on a particle if the motion
and applied forces are known. The second (principal) problem of dynamics
for such motion will pose two questions, namely, knowing the applied
forces, to determine: (a) the equation of motion of the particle and (b) the
reaction of its constraints.
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4. Rectilinear motion of a particle

We know from kinematics that in rectilinear motion the velocity and
acceleration of a particle are continuously directed along the same straight
line. As the direction of acceleration is coincident with the direction of
force, it follows that a free particle will move in a straight line whenever
the force acting on it is of constant direction and the velocity at the initial
moment is either zero or is collinear with the force.

Consider a particle moving rectilinearly under the action of an applied
force R. The position of the particle on its path is & M_R-2F,
specified by its coordinate x (Fig. 10.1) In this case |z > ST
the principal problem of dynamics is: knowing R, Fie. 10.1
find the equation of motion of the particle x = £(¢). g 1
Eq. (10.3) gives the relation between x and R. Projecting both sides of the
equation on axis Ox, we obtain:

ma_=R_= ZF,CX ,
k
or, as
d’x
mW:Zk:F,ﬂ. (10.6)

Eq. (10.6) is called the differential equation of rectilinear motion of a
particle. It is often more convenient to replace Eq. (10.6) with two
differential equations containing first derivatives:

dv dx

m—=>»F , —=v_. 10.7
dt Zk: S (107)

Whenever the solution of a problem requires that the velocity be found

as a function of the coordinate x instead of time ¢ (or when the forces

themselves depend on x), Eq. (10.7) is converted to the variable x. Eq.
(10.7) takes the form

dv
dxx =>F,. (10.8)

k

mo,

The principal problem of dynamics is, essentially, to develop the
equation of motion x = f(r) for a particle from the above equations, the
forces being known. For this it is necessary to integrate the corresponding
differential equation. In order to make clear the nature of the mathematical
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problem, it should be recalled that the forces in the right side of Eq. (10.6)
can depend on time ¢, on the position of the particle x, and on the velocity
v,. Consequently, in the general case Eq. (10.6) is, mathematically, a
differential equation of the second order of the form

d’x dx
—=d| t,x,— |. 10.9
dt’ ( dtj (10.9)

The equation can be solved for every specific problem after
determining the form of its right-hand member, which depends on the
applied forces. When Eq. (10.9) is integrated for a given problem, the
general solution will include two constants of integration C; and C,, and
the general solution will be

x=£(5C,C,). (10.10)

To solve a concrete problem, it is necessary to determine the values of
the constants C; and C,. For this we introduce the so-called initial
conditions.

Investigation of any motion begins with some specified instant called
the initial time t = 0, usually the moment when the motion under the action
of the given forces starts. The position occupied by a particle at the initial
time 1is called its initial displacement, and its velocity at that time is its
initial velocity (a particle can have an initial velocity either because at time
t = 0 it was moving under no force or because up to time ¢ = 0 it was
subjected to the action of some other forces). To solve the principal
problem of dynamics, we must know, besides the applied forces, the initial
conditions, 1.e., the position and velocity of the particle at the initial time.

In the case of rectilinear motion, the initial conditions are specified in
the form

att=0,x=x,andv_=v,. (10.11)
From the initial conditions we can determine the constants C; and C,

and find the partial solution of Eq. (10.9), which gives the equation of
motion of the particle:

x=f(t,x,,0,). (10.12)

The following simple example will explain the above.
Let there be a force Q of constant magnitude and direction acting on a
particle. Then Eq. (10.7) acquires the form
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dv
m
dt
As O, = const, multiplying both members of the equation by dt and
integrating, we obtain:

0,

m

x:Qx.

L =

X

t+C,. (10.13)

Substituting the value of v, into Eq. (10.7), we have:

@:QXHCI.

dt m

Multiplying by df and integrating once again, we obtain:

x:%%t2+Clt+C2. (10.14)

This is the general solution of Eq. (10.9) for the specific problem in the
form given by Eq. (10.10).

Now let us determine the integration constants C; and C,, assuming for
the specific problem that the initial conditions are given by (10.11).
Solutions (10.13) and (10.14) must satisfy any moment of time, including ¢
= 0. Therefore, substituting zero for ¢ in Eqs. (10.13) and (10.14), we
should obtain v, and x, instead of v, and x, 1.e., we should have

C =v, C =x,.

These equations give the values of the constants C; and C, which
satisfy the initial conditions of a given problem. Substituting these values
into Eq. (10.14), we finally obtain the relevant equation of motion in the
form expressed by Eq. (10.12):

10,

X=X0+Uot+§;f2. (1015)

5. Solution of problems

Solution of problems of dynamics by integrating the differential
equations of motion includes the following operations:

(1) Writing the differential equation of motion. For this,

(a) Choose an origin (usually coinciding with the initial position of the
particle) and draw a coordinate axis along the line of motion, as a rule in

46



the direction of motion; if, for the applied forces, a particle has a position
of equilibrium, it is convenient to choose the origin to coincide with the
position of static equilibrium.

(b) Depict the moving particle in an arbitrary position (but such that
x>0 and v, > 0; the latter condition is important when the applied forces
include forces depending on velocity), and draw all the forces acting on the
particle.

(c¢) Compound the projections of all the forces on the coordinate axis
and substitute the sum into the right side of the differential equation of
motion. It is important to express all the variable forces in terms of the
quantities (t, x or v) on which they depend.

(2) Integrating the differential equation of motion. The integration
is carried out according to the rules of higher mathematics, depending on
the form of the obtained equation, i.e., on the form of the right-hand
member of Eq. (10.9). When besides the constant forces there is one
variable force that depends only on time ¢, or only on distance x, or only on
velocity v, the equation of rectilinear motion can generally be integrated by
the method of separating the variables. If only the velocity has to be
determined, it is often possible to solve the problem by integrating either
Eq. (10.7) or Eq. (10.8).

(3) Determining the constants of integration. In order to determine
the constants of integration, it is necessary from the conditions of the
problem to define the initial conditions in the form (10.11). The values of
the constants are found from the initial conditions, and they can be
determined directly after each integration.

If the differential equation of motion is an equation with separable
variables, instead of introducing integration constants we can immediately
evaluate the definite integrals on both sides of the equation over the
appropriate range.

(4) Determining the required quantities and analysing the
obtained results. In order to be able to analyse the solution and also to
verify the dimensions, the whole solution should be carried out in the most
general form (in letter notation), inserting the numerical data only in the
final results.

These general rules also hold for curvilinear motion.

6. Curvilinear motion of a particle

Consider a free particle moving under the action of forces Fy, ..., F,.
Let us draw a fixed set of axes Oxyz (Fig. 10.2). Projecting both members
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of the equation (10.3) on these axes we obtain the differential equations of
curvilinear motion of a body in terms of the projections on rectangular
cartesian axes:

md—zx—ZF md—zy—ZF md—zz—ZF (10.16)
i A gt 0 gt TR '
As the forces acting on the particle may z
depend on time, the displacement or the velocity of v
the particle, then by analogy with Eq. (10.9), the f, E,

right-hand members of Eq. (10.16) may contain the
time ¢, the coordinates x, y, z of the particle, and the
projections of its velocity v,, v,, v.. Furthermore, 7
the right side of each equation may include all ~Z .
these variables. Fig. 10.2

Egs. (10.16) can be used to solve both the first
and the second (principal) problems of dynamics. To solve the principal
problem of dynamics we must know, besides the acting forces, the initial
conditions, i.e., the position and velocity of the particle at the initial time.
The initial conditions for a set of coordinate axes Oxyz are specified in the
form

o

X:XO,yZyO,Z:ZO
at¢=0, . (10.17)

Ux = L)xO’ Uy :UyO’ Uz = UzO'

Knowing the acting forces, by integrating Eq. (10.16) we find the
coordinates x, y, z of the moving particle as functions of time ¢, i.e., the
equation of motion for the particle. The solutions will contain six constants
of integration C;, C,, ..., Cs the values of which must be found from the
initial conditions (10.17).

LECTURE 11
RECTILINEAR VIBRATION OF A PARTICLE

The study of vibrations is essential for a number of physical and
engineering fields. Although the vibrations studied in such different fields
as mechanics, radio engineering, and acoustics are of different physical
nature, the fundamental laws hold for all of them. The study of mechanical
vibrations is therefore of importance not only because they are frequently
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encountered in engineering but also because the results obtained in
investigating mechanical vibrations can be used in studying and
understanding vibration phenomena in other fields.

1. Free vibrations neglecting resisting forces

We shall start with examining free vibration of a particle, neglecting

resisting forces. Consider a particle M (Fig. 11.1) p PR

moving rectilinearly under the action of a single i > T
restoring force F directed towards a fixed centre e — =
O and proportional to the distance from that Fig. 11.1
centre. The projection of F on axis Ox is
F =—cx. (11.1)

We see that the forced F tends to return the particle to its position of
equilibrium O, where F=0, which is why it is called a "restoring" force.
Examples of such a force are an elastic force and the force of attraction.

Let us derive the equation of motion of particle M. Writing the
differential equation of motion, we obtain:

d*x
m—=
dr’

Dividing both sides of the equation by m and introducing the notation

—CX.

£ _r, (11.2)
m

we reduce the equation to the form

X
?+k2x:0. (11.3)

Eq. (11.3) is the differential equation of free vibrations without
resistance. The solution of this linear homogeneous differential equation of
the second order is sought in the form x=e¢". Assuming x=¢" in Eq. (11.3),
we obtain for the determination of n the so-called characteristic equation,
which in the present case has the form n°—k°=0. As the solutions of this
equation are purely imaginary (n,,=%ik), from the theory of differential
equations the general solution of Eq. (11.3) has the form

x=C,sinkt + C,coskt, (11.4)

where C| and C, are constants of integration.
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If we replace C; and C, by constants a and a, such that C;=acosa and
C,=asina, we obtain

x=asin(kt +a), (11.5)

This is another form of the solution of Eq. (11.3) in which the
constants of integration appear as a and a and which is more convenient for
general analysis.

The velocity of a particle in this type of motion is

L :%zakcos(kwroc). (11.6)

The vibration of a particle described by Eq. (11.5) is called simple
harmonic motion.

All the characteristics of this type of motion lend themselves to visual
kinematic interpretation. Consider a particle B moving uniformly along a
circle of radius a from a point B, defined by the angle DOBy=a. (Fig. 11.2),
and let the constant angular velocity of radius OB be k. Then, at any instant
t angle ¢ =L DOB = a + kt and, it will be readily noticed, the projection M
of point B on the diameter perpendicular to DE moves according to the law
x = a sin(kt+a), where x=OM, i.e., the projection performs harmonic
motion.

The quantity @, which is the maximum distance of M from the centre
of vibration, is called the amplitude of vibration. The quantity ¢ = a + kt is
called the phase of vibration. Unlike the coordinate x, the phase ¢ defines
both the position of the particle at any given time and the direction of its
subsequent motion. For example, from position M at phase ¢ the particle
will move to the right, at phase (m— ¢) it will move to the left. Phases
differing by 2n are considered identical. The
quantity o defines the initial phase, with which
the motion begins. For example, at a =0 the
motion is according to the sine law (it begins at O
and the velocity is directed to the right); and at |
o = 0.5t y the motion is according to the cosine
law (starting from point x=a with a velocity ke
vy = 0). The quantity & which coincides with the ay Mg
angular velocity of the rotating radius OB in Fig. 7 b
11.2 1s called the angular, or circular, frequency Fig. 11.2
of vibration.
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The time T (or 1) in which the moving particle makes one complete
vibraton is called the period of vibration. In one period the phase changes
by 2n. Consequently, we must have kT — 2nt, whence the period

_n
a3

The quantity v, which is the inverse of the period and specifies the
number of oscillations per second is called the frequency of vibration:

1 k
V=—=—o,
T 2=

It can be seen from this that the quantity £ differs from v only by a
constant multiplier 2n. Usually we shall speak of the quantity k£ as of
frequency.

The values of a and a are determined from the initial conditions.
Assuming that, at =0, x = x, and v, =v,, we obtain from Eqgs. (11.5) and
(11.6) xo = a sin a and vo/k = a cos a. By first squaring and adding these
equations and then dividing them, we obtain

2
az,/xé—k%, tgaz%. (11.9)
0

Note the following properties of free vibration without resistance:

(1) the amplitude and initial phase depend on the initial conditions;

(2) the frequency k, and consequently the period 7, do not depend on
the initial conditions [see Eqgs. (11.2) and (11.7)] and are invariable
characteristics for a given vibrating system.

It follows, in particular, that if a problem requires that only the period
(or frequency) of vibration be determined, it is necessary to write a
differential equation of motion in the form (11.3). Then 7 is found
immediately from Eq. (11.7) without integrating.

T (11.7)

(11.8)

2. Effect of a constant force on the free vibration of a particle

Let the particle M in Fig. 11.3 be subject, in addition to the restoring
force F directed towards the centre O, to a force g
P constant in magnitude and direction. The 0 ol F

. . i
value of force F' continues to be proportional to 5 x
the distance from the centre O, i.e., F =—c OM. =
Obviously, in that case the equilibrium point is Fig. 11.3
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Ox at a distance OO, = d4 from O, given by the equation cdy = P, or

O, =—. (11.10)
c

We shall call & the static deflection of the particle.

Placing the origin of the reference system at O, direct axis O;x in the
direction of force P. Then F,=-c(x+dy), and P,=P. Writing the
differential equation of motion and taking into account that, by Eq. (11.10),
cdy = P, we have:

—;C +k’x=0.

dt

The obtained equation, in which £ is given by Eq. (11.2), is the same as
Eq. (11.3). Hence we conclude that a constant force P does not affect the
character of the vibrations of a particle under the action of a restoring force
F and only displaces the centre of vibration in the direction of P by the
amount of the static deflection d.

Let us express the period of vibration in terms of dy. From (11.2) and
(11.10), we have kK*=P/md. Then Eq. (11.7) gives:

m
T=2m |25, . 11.11
T O (11.11)

Thus, the period of vibration is in proportion to the square root of the
static deflection 0.

In particular, if P is the force of gravity, as in the case of vibration of a
load on a vertical spring, then P = mg, and Eq. (11.11) takes the form

T=om O (11.11)

g

3. Free vibration with a resisting force proportional to velocity
(damped vibration)

Let us see how the resistance of a surrounding medium affects
vibrations, assuming the resisting force proportional to the first power of
the velocity: R = —pv (the minus indicates that

v
force R is opposite to v). Let a moving particle S
be acted upon by a restoring force F and a g 114 M
resisting force R (Fig. 11.4). Then F, = —cx and Fig. 11.
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R, = —pv, = —ndx/dt and the differential equation of motion is

md_zx =—cx— ax
dr’ W
Dividing both sides by m, we obtain:
2
—f+2b@+k2x=o, (11.12)
dt dt
where
ok, E_op (11.13)
m m

It is easy to verify that k and b have the same dimension (s™'), which
makes it possible to compare them.

Eq. (11.12) 1is the differential equation of free vibrations with a
resisting force proportional to the velocity. Its solution, as in the case of
Eq. (11.3), is sought in the form x = ¢". Substituting into Eq. (11.13), we
obtain the characteristic equation n*+2bn+k* =0, the roots of which are:

n,=-bt\b> -k . (11.14)

Let us consider the case when k > b, 1.e., when the resistance is small
as compared with the restoring force. Introducing the notation

k, =~NbB* —k* . (11.15)

from (11.14) we obtain n,, = —b=+ik, 1.e., the solutions of the characteristic
equation are complex. In that case the general solution of Eq.(11.12)
differs from the solution of Eq. (11.2) only by the multiplier ¢”, i.e., it has
the form

x=e"(Csinkt +C,coskt), (11.16)
or, by analogy with Eq. (11.5),
x=ae"sin(kt+a). (11.17)

The quantities a and a are constants of integration and are determined
by the initial conditions.

Vibrations according to the law (11.17) <
are called damped because, due to the ap[= F— y
multiplier e, the value of x = OM decreases /gx ~~~~~~ P il
with time and tends to zero. A graph of such !

..a .~




vibrations is given in Fig. 11.5 [the curve lies between the broken curves x
= ae™” and x = — ae™, as sin(k,++a) cannot exceed unity].
The time T, equal to the period of sin(k;#+a), i.e., the quantity

_2n 2m

ki b -k
is conventionally called the period of damped vibration. In the course of
one period the particle performs a complete vibration, e.g., having begun
moving from position x = 0 to the right (see Fig. 11.4) it arrives at the same
position, again moving to tbe right. Taking Eq.(11.7) into account,
Eq. (11.18) can be written in the form

From the equations we see that 7 > T, i.e., that resistance to vibration
tends to increase the period of vibration. When, however, the resistance is
small (b <<k), the quantity b°/k* can be neglected in comparison with
unity, and we can assume 7 = 7. Thus, a small resistance has no practical
effect on the period of vibration.

The time interval between two successive displacements of an
oscillating particle to the right or to the left is also equal to 7;. Hence, if the
first (maximum) displacement x; to the right takes place at time ¢#,, the
second displacement x, will be at time #, =¢; + T etc. Then, by Eq. (11.17)
and taking into account that k7 = 2x, we have:

T (11.18)

x, =ae " sin(kt, +a),

~b(H+T;) —bT;

x, =ae sin(k, + kT, + o) =xe

Similarly, for any displacement x,.; we shall have x,1=x,e”". Thus
we find that the amplitude of vibration decreases in geometric progression.
The ratio of this progression ¢’ is called the decrement, and the modulus
of its logarithm, i.e., the quantity b7}, the logarithmic decrement.

It follows from these results that a small resistance has practically no
effect on the period of vibration but gradually damps it by virtue of the
amplitude of vibration decreasing according to a law of geometric
progression.

Let us consider the case when b >k, i.e., the resistance is large as
compared with the restoring force. Introducing the notation b*—k*=r", we
find that in this case the solutions of the characteristic equation (11.14) are
n, =—bxr, 1.e., both are real and negative (as » < b). Consequently, when
b>k the solution of Eq. (11.12) describing the law of motion of the particle
has the form
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_ —(b+r)t —(b-r)t
x=Ce """ +Ce . z!

Since with time the function e, where a > 0, z
decreases gradually, tending to zero, the particle
no longer vibrates but instead, under the influence
of the restoring force, gradually approaches the .
position of equilibrium x=0. A graph of such Fig. 11.6
motion (if at = 0, x = xy and vy > 0) has the form
shown in Fig. 11.6.

4. Forced vibration. Resonance

Let us consider an important case of vibration where, in addition to a
restoring force F, a particle is also subjected to a force Q, varying
periodically with time, whose projection on axis Ox is

Q. =0,sin pt. (11.19)

This force is called a disturbing force, and the vibration caused by it is
called forced. The quantity p in Eq. (11.19) is called the frequency of the
disturbing force.

A disturbing force may vary with time according to other laws, but we
shall consider only the case of O, defined by Eq. (11.19). This type of
disturbing force is called a periodic force.

(1) Undamped Forced Vibration. Consider the motion of a particle
on which, besides the restoring force F, is acting only a disturbing force Q.
The differential equation of motion will be

’x :
m e cx+Q,sin pt .

Divide both sides of the equation by m and assume

S_p (11.20)

m
Then, taking into account the expression (11.2), the equation takes the
form

2
X

dt?

Eq. (11.21) 1s the differential equation of undamped forced vibration
of a particle. From the theory of differential equations, its solution is

+k’x = P,sin pt . (11.21)
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x = x;+x, where x, is the general solution of the equation without the right
side, 1.e., the solution of Eq. (11.3) as given by Eq. (11.5), and x, is a
particular solution of the complete equation (11.21).

Assuming p # k, let us find the solution of x; in the form

x, = Asin pt ,

where A is a constant such that Eq. (11.21) becomes an identity.
Substituting the expression of x, and its second derivative into Eq. (11.21),
we have:

—p’ Asin pt + k> Asin pt = P,sin pt .

This equation is satisfied at any ¢, if 4 (k* — p*) = Py, or
i

k2 _p2 -

Thus, the required particular solution is

A=

P .
X, = P —0p2 sin pt , (11.22)
As x=x; +x; and the expression for xx is given by Eq. (11.5), the
general solution of Eq. (11.21) takes the final form

i
k2_p2

x=asin(kt+oc)+ sin pt , (11.23)
where a and o are constants of integration determined by the initial
conditions.

Solution (11.23) shows that in the present case the vibration of a
particle consists of (1) free vibrations of amplitude a (depending on the
initial conditions) and frequency k called natural vibrations and (2) forced
vibrations of amplitude A (not depending on the initial conditions) and
frequency p.

In practice, due to the inevitable presence of various damping forces,
the natural vibrations rapidly disappear. Therefore in this type of motion
the forced vibrations defined by Eq. (11.22) are of primary importance.

Resonance. When p = £, i.e., when the frequency of the disturbing
force equals the frequency of the natural vibrations, the phenomenon
known as resonance occurs. The case is not covered by Egs. (11.22), but it
can be proved that when resonance takes place, the amplitude of forced
vibration increases indefinitely, as shown below in Fig. 11.7.
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At p=k, Eq. (11.21) does not contain the |, ey
particular solution x, = 4sin pt, and the solution 1
must be sought in the form /f\’

x, = Btcos pt IS 3

) pt. ~\/ u

From this we obtain the law of undamped ™ \\J

forced vibrations when resonance occurs: = Sao
. Fig. 11.7
R . (11.24) £
2p 2

We see that the amplitude of forced vibration during resonance does
increase in proportion to time, and the law of vibration has the form shown
in Fig. 11.7. The phase shift in resonance is n/2.

(2) Damped Forced Vibration. Consider the motion of a particle on
which are acting a restoring force F, a damping force R proportional to the
velocity, and a disturbing force Q given by Eq. (11.19). The differential
equation of this motion has the form

md—zx——cx— @+Q sin pt

dr’ W 7=t

Dividing the equation by m and taking into account the expressions
(11.13) and (11.20), we obtain:

2

m%+2b%+k2x:Qosinpt. (11.25)

Eq. (11.25) is the differential equation of damped forced vibration of a
particle. Its general solution, as is known, has the form x = x;+x,, where x;
is the general solution of the equation without the right side, i.e., of Eq.
(11.12) [at £ > b this solution is given by Eq. (11.17)], and x; is a particular
solution of the complete equation (11.25). Let us find the solution x, in the
form

X2 = ASin(pt_B)a

where 4 and [ are constants so chosen that Eq. (11.25) becomes an
identity.

Substituting these expressions into the left side of Eq. (11.25) and
introducing for the sake of brevity the notation pt — B = y, we obtain:

A(=p* +k*)siny + 2bpAcosy = P,(cosBsiny +sinBcosy) .
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For this equation to be satisfied at any value of v, i.e., at any instant of
time, the factors of sin y and cos y in the left and right sides should be
separately equal. Hence,

A(k* — p*)=P,cosP, 2bpA=P,sinp.
First squaring and adding these equations (they are also used to
determine 3 uniquely) and then dividing one by the other, we obtain:
A= ki  tgp=—P (11.26)
JUE = pPy +4b7p? K ~p

As x = x;+x,, and the expression for x; (when k>b) is given by Eq.
(11.17), we have the final solution of Eq. (11.25) in the form

x=Ae™"sin(kt+o)+ Bsin( pt —B) (11.27)

where a and o are constants of integration determined by the initial
conditions, and the expressions for 4 and  are given by Egs. (11.26) and
do not depend on the initial conditions. For 5#=0 the solution (11.27) is just
(11.22) and (11.23) for the case without
resisting forces. >

These vibrations are compounded of ¢ 2 ¢
natural vibration [the first term in Eq. e
(11.27); Fig. 11.8a] and forced vibration
[the second term in Eq. (11.27); Fig.
11.8p]. It was established that it 1is
transient and is damped fairly quickly,
and after a certain interval of time ¢,
called the transient period, can be
neglected.

If, for example, we assume that free
vibrations can be neglected from the
moment when their amplitude is less than
0.01 A4, then the value of #, can be
determined from the equation ae™= 0.01
A

b

1. 100a
t. =—In . 11.28
tr b A ( )
We see, thus, that the less the resistance (i.e., the less the value of b),

the greater the transient period.
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A possible picture of transient vibration according to the law (11.27)
and starting from rest, is shown in Fig. 11.8¢. Given other initial conditions
and ratios of the frequencies p and k;, the character of the vibrations in the
time interval 0 < ¢ < ¢, can be quite different.

However, in all cases, after the transient period elapses the natural
vibrations will, for all practical purposes, cease and the particle will vibrate
according to the law

x, = Asin(pt —P). (11.29)

This is steady-state forced vibration, a sustained periodic motion with
an amplitude 4 denned by Eq. (11.26) and a frequency p equal to the
frequency of the disturbing force. The quantity B characterises the phase
shift of forced vibration with respect to the disturbing force.

LECTURE 12
INTRODUCTION TO THE DYNAMICS OF A SYSTEM.
MOMENTS OF INERTIA OF RIGID BODIES
1. Mechanical systems. External and internal forces

A mechanical system is defined as such a collection of material points
(particles) or bodies in which the position or motion of each particle or
body of the system depends on the position and motion of all the other
particles or bodies. We shall regard a body as a system of its particles.

External forces are defined as the forces exerted on the members of a
system by particles or bodies not belonging to the given system. Internal
forces are defined as the forces of interaction between the members of the
same system. We shall denote external forces by the symbol F, and
internal forces by the symbol F®.

Both external and internal forces can be either active forces or
reactions of constraints. The division of forces into external and internal is
purely relative, and it depends on the extent of the system whose motion is
being investigated. In considering the motion of the solar system as a
whole, for example, the gravitational attraction of the sun acting on the
earth is an internal force; in investigating the earth's motion about the sun,
the same force is external.

Internal forces possess the following properties:

(1) The geometrical sum (the principal vector) of all the internal forces
of a system is zero. This follows from the third law of dynamics, which
states that any two particles of a system (Fig. 12.1) act on each other with
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equal and oppositely directed forces F?,, and
F"%,,, the sum of which is zero. Since the same is
true for any pair of particles of a system,

D F"=0.
k

(2) The sum of the moments (the principal
moment) of all the internal forces of a system
with respect to any centre or axis is zero. For if
we take an arbitrary centre O, it is apparent from
Fig. 12.1 that mO(F(i)12)+mO(F(i)21)=O. The same
result holds for the moments about any axis. Hence, for the system as a
whole we have:

> m,(F")=0 or > m(F")=0.
k k

It does not follow from the above, however, that the internal forces are
mutually balanced and do not affect the motion of the system, for they are
applied to different particles or bodies and may cause their mutual
displacement. The internal forces will be balanced only when a given
system is a rigid body.

2. Mass of a system. Centre of mass

The motion of a system depends, besides the acting forces, on its total
mass and the distribution of this mass. The mass of a system is equal to the
arithmetical sum of the masses of all the particles or bodies comprising it:

M:ka.
k

In a homogeneous field of gravity, where g = const., the weight of
every particle of a body is proportional to its mass, hence the distribution of
mass can be judged according to the position of the centre of gravity. Let us
rewrite the equations defining the coordinates of the centre of gravity in a
form manifestly including mass. Cancelling out g, we obtain:

1 | |
Xc zﬁzmk‘xkn Ye :Mzmkyka Zc zﬁzmkzk . (12.1)
% i i

The equations include only the masses my; of the material points
(particles) of the body and their coordinates x;, y;, z,. Hence, the position of
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point C (x¢, ye, zc) gives the distribution of mass in the body or in any
mechanical system, where m; and xy, yy, z; are the masses and coordinates
of the system's respective points.

The geometric point C whose coordinates are given by Eqgs. (12.1) is
called the centre of mass, or centre of inertia of a mechanical system.

If the position of the centre of mass is defined by its radius vector rc,
we can obtain from Egs. (12.1) the following expression:

1
r, :Mzk:mkrk. (12.2)
where r, is the radius vector of particle k of the system.
3. Moment of inertia of a body about an axis. Radius of gyration
The position of centre of mass does not characterise completely the

distribution of mass in a system. For if in the system in Fig. 12.2 the
distance / of each of two identical spheres 4 and B from the axis Oz is

increased by the same quantity, the b Yk
location of the centre of mass will not ) g éﬂ;\; % .
change, though the distribution of mass =——%) i { )
will change and influence the motion of A :"a'j___y B

the system (all other conditions remaining /

the same, the rotation about axis Oz will -

be slower). Fig. 12.1

Accordingly, another characteristic of
the distribution of mass, called the moment of inertia, is introduced in
mechanics. The moment of inertia of a body (system) with respect to a
given axis Oz (or the axial moment of inertia) is defined as the quantity
equal to the sum of the masses of the particles of the body (system) each
multiplied by the square of its perpendicular distance from the axis:

J. =Y mbh. (12.3)
k

It follows from the definition that the moment of inertia of a body (or
system) with respect to any axis is always positive.

It will be shown further on that axial moment of inertia plays the same
part in the rotational motion of a body as mass does in translational motion,
1.e., moment of inertia is a measure of a body's inertia in rotational motion.

By Eq. (12.3), the moment of inertia of a body is equal to the sum of
the moments of inertia of all its parts with respect to the same axis.
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For a material point located at a distance % from an axis, J. = mh”. The
unit for the moment of inertia in the SI system is 1 kg m”.

In computing the axial moments of inertia the distances of the points
from the axes can be expressed in terms of their coordinates xy, yy, zx. Then
the moments of inertia about the axes Oxyz will be given by the following
equations:

Jo= 2 m iz J, = m () +20), =) m (v + X)), (12.4)
k k k

The concept of the radius of gyration is often employed in
calculations. The radius of gyration of a body with respect to an axis Oz is
a linear quantity i, defined by the equation

J.=J, =M. (12.5)

where M is the mass of the body.

It follows from the definition that geometrically the radius of gyration
is equal to the distance from the axis Oz to a point, such that if the mass of
the whole body were concentrated in it, the moment of inertia of the point
would be equal to the moment of inertia of the whole body.

Knowing the radius of gyration, we can obtain the moment of inertia
of a body from Eq. (12.5) and vice versa.

Egs. (121.3) and (12.4) are valid for both rigid bodies and systems of
material points. In the case of a solid body, dividing it into elementary
parts, we find that in the limit the sum in Eq. (12.3) becomes an integral.
Hence, taking into account that dm = pdV, where p is the density and V the
volume, we obtain:

J. = thdmz j ph*dV . (12.6)
) )

Eq. (12.6) are useful in calculating the moments of inertia of
homogeneous bodies of geometric shape. As in that case the density p is
constant, it can be taken out of the integral sign.

Let us determine the moments of inertia of some homogeneous bodies.

(1) Thin homogeneous rod of length | and mass M:

2
J. = Mi . (12.7)
3
(2) Thin circular homogeneous ring of radius R and mass M:
J.=MR*. (12.8)
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(3) Circular homogeneous disc or cylinder of radius R and mass
M:
2
J. = MR :
2
(4) Uniform rectangular lamina of mass M with sides of length a
and b (axis X in coincident with side a, axis y with side b):

2 2
J = Mb g = Ma
3 g 3
(5) Uniform right circular cone of mass M and base radius R (axis
Z is coincident with the axis of the cone):

J.=03MR". (12.11)

(12.9)

(12.10)

(6) Uniform sphere of mass M and base radius R (axis z is
coincident with a diameter):

J_=04MR>. (12.12)

4. Moments of inertia of a body about parallel axes.
The parallel axis (Huygens') theorem

In the most general case, the moments of inertia of the same body with
respect to different axes are different. Let us see how to determine the
moment of inertia of a body with respect to any axis if its moment of inertia
with respect to a parallel axis through the
body is known.

Draw through the centre of mass of a
body C arbitrary axes Cx'y’z’, and through an
arbitrary point O on axis Cx' axes Oxyz, so
that Oy || Cy' and Oz Cz' (Fig. 12.3).
Denoting the distance between axes Cz' and
Oz by d, from Eqgs. (12.4)

Oz _zmk(xlf +yl§)
ka('xk +yk

But it is apparent from the drawing that for any point of the body
x;y = x'% —d, and y; = y';. Substituting these expressions for x; and y; into the
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expression for Jp, and taking the common multipliers @” and 2d outside the
parentheses, we obtain:

J,, = Z:mk(x,;2 +317) +d22mk —ZCJ’Z:mkx,'c .
k k k

The first summation in the right member of the equation is equal to
Jco, and the second to the mass M of the body. Let us find the value of the
third summation. From Eq. (12.1) we know that, for the coordinates of the
centre of mass

r_ '
kaxk = Mx_ .
k
But since in our case point C is the origin, x'c = 0, and consequently
!/ —_—
kaxk =0.
k

We finally obtain
Jo, =J o +Md>. (12.13)

Eq. (12.13) expresses the parallel axis theorem enunciated by
Huygens: The moment of inertia of a body with respect to any axis is equal
to the moment of inertia of the body with respect to a parallel axis through
the centre of mass of the body plus the product of the mass of the body and
the square of the distance between the two axes.

It follows from Eq. (12.13) that J,, > J,. Consequently, of all the axes
of same direction, the moment of inertia is least with respect to the one
through the centre of mass.

LECTURE 13
THEOREM OF THE CHANGE IN THE KINETIC ENERGY OF A
SYSTEM.
1. The Kinetic energy of a particle

The kinetic energy of a particle is defined as a quantity equal to half
the product of the mass of the particle and the square of its velocity
2
mo
K= ) 13.1
5 (13.1)

The units of measurement of this quantity are:
(a) In the SI system
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kg m®/s%;
(b) In the mkg(f)s system
kef s*/m) (m?¥/s?)= kgf m;
(kg ) (m/s")=kg

2. Work done by a force. Power

The concept of work is introduced as a measure of the action of a
force on a body in a given displacement,
specifically that action which is represented by the
change in the magnitude of the velocity of a
moving particle.

First let us introduce the concept of
elementary work done by a force in an
infinitesimal displacement ds. The elementary T,
work done by a force F (Fig. 13.1) is defined as a Fig. 13.1
scalar quantity

dA=F.ds. (13.2)

where F is the projection of the force on the tangent to the path in the
direction of the displacement, and ds is an infinitesimal displacement of the
particle along that tangent.

This definition corresponds to the concept of work as a characteristic
of that action of a force which tends to change the magnitude of velocity.
For if force F is resolved into components F; and F,, only the component
F., which imparts the particle its tangential acceleration, will change the
magnitude of the velocity. As for component F,, it either changes the
direction of the velocity vector v (gives the particle its normal acceleration)
or, in the case of constrained motion, changes the pressure on the
constraint. Component F, does not affect the magnitude of the velocity, or
as they say, force F, "does no work".

Noting that F; = F cosa, we further obtain from Eq. (13.2):

dA = Fcosads . (13.3)

Thus, the elementary work done by a force is equal to the product of
the projection of that force on the direction of displacement of the particle
and the infinitesimal displacement ds (Eq. 13.2) or, the elementary work
done by a force is the product of the magnitude of that force, the
infinitesimal displacement ds, and the cosine of the angle between the
direction of the force and the direction of the displacement (Eq. 13.3).
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If angle a is acute, the work is of positive sense. In particular, at =0,
the elementary work dA=Fds.

If angle a is obtuse, the work is of negative sense. In particular, at
a=180°, the elementary work dA= —Fds.

If angle a=90°, i.e., if a force is directed perpendicular to the
displacement, the elementary work done by the force is zero.

The sign of the work has the following meaning: the work is positive
when the tangential component of the force is pointed in the direction of
the displacement, i.e., when the force accelerates the motion; the work is
negative when the tangential component is pointed opposite the
displacement, i.e., when the force retards the motion.

As we know from kinematics, the vector of the elementary
displacement of a particle dr=vdt, and ds=|v|d¢, whence ds=|dr|. Using the
concept of the scalar product of two vectors employed in vector algebra,
Eq. (13.3) can be represented in the form

dA =Fdr . (13.4)

Consequently, the elementary work done by a force equals the scalar
product of the force vector and the vector of the elementary displacement
of its point of application.

Lot us now find the analytical expression for elementary work. For
this we resolve force F into components F,, F), F. parallel to the coordinate
axes. The infinitesimal displacement ds 1s compounded of the
displacements dx, dy, dz parallel to the coordinate axes, where x, y, z are the
coordinates of point. The work done by force F in the displacement ds can
be calculated as the sum of the work done by its components Fy, F), F. in
the displacements dx, dy, dz. But the work in the displacement dx is done
only by component F, and is equal to F,dx. The work in the displacements
dy and dz is calculated similarly. Thus, we finally obtain

dA=Fdx+ Fdy+Fdz. (13.5)

Eq. (13.5) gives the analytical expression of the elementary work
done by a force.

Eq. (13.5) can be obtained directly from (13.4) if the scalar product
is expressed in terms of the projections of the vectors. Then, taking into
account that the projections of the radius vector r of point M on the axes
Oxyz are equal to its cartesian coordinates x, y, z, we obtain at once
dA=F . dx+F,dy+F.dz.
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The work done by a force in any finite displacement MM, (see Fig.
13.1) is calculated as the integral sum of the corresponding elementary
works and is equal to

Ay = | Fods, (13.6)
MO
or
M,
Ay = | (Fdx+Fdy+ F.dz). (13.7)
My

Thus, the work done by a force in any displacement MM, to the
integral of the elementary work taken along this displacement.

The limits of the integral correspond to the values of the variables of
integration at points M, and M, (or, more exactly, the integral is taken
along the curve MyM,, i.e., it is curvilinear).

If the quantity F, is constant (F.=const), then from Eq. (13.6),
denoting the displacement MyM, by the symbol s;, we obtain:

Ay = Fis,. (13.8)

In particular, such a case is possible when the acting force is constant
in magnitude and direction (F=const.) and the point of application is in
rectilinear motion (Fig. 252). In this case F,=Fcosa=const, and the work
done by the force

A = Fs,cos.. (13.9)

(MM,y)

The unit of work in the SI system is the joule (1J = IN m), and in the
mkg(f)s system, the kgf m.

Power. The term power is defined as the work done by a force in a
unit of time (the time rate of doing work). If work is done at a constant rate,
the power

W= té’ (13.10)
1

where ¢, 1a the time in which the work 4 is done. In the general case,
LB gy,
dt dt

(13.11)
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Thus, power is product of the tangential component of a force by the
velocity.

The unit of power in the SI system is the watt (1 W=1 J/s), and in the
mkg(f)s system, the kgf m/s. In engineering the unit of power commomly
used 1s horsepower (hp), which is equal to 75 kgt m/s, or 736 W.

The work done by a machine can be expressed as the product of its
power and the time of work. This has given rise to the commonly used
technical unit of work, the kilowatt-hour (1 kW h=3.6 10° J=367100 kgf
m).

It can be seen from the equation W=F,v that if a motor has a given
power W, the tractive force F; is inversely proportional to the velocity v.
That is why, for instance, on an upgrade or poor road an automobile goes
into lower gear, thereby reducing the speed and developing a greater
tractive force with the same power.

3. Examples of calculation of work

(1) Work done by gravity. Let a
particle M subjected to the force of
gravity P move from a point M, (xo, yo, Zo)
to a point M; (x;, y, z1). Choose a
coordinate system so that the axis Oz

points vertically up (Fig. 13.2). Then s

P=0, P=0, P~=-P. Substituting these

expressions into Eq. (13.5) and taking into

account that the integration variable is z, "%

we obtain:
(M) 5

Ay = j (—P)dZ:—PJdZ:P(ZO ~z). (13.12)

(My) 20

If point M, is higher than M, then zy—z,=h, where h is the vertical
displacement of the particle; if M, is below M, then zy—z,=—(z— zo)=—h.
Finally we have:

Ay, =EPh. (13.13)
Thus, the work done by gravity is equal to the product of the
magnitude of the force and the vertical displacement of the point to which it

is applied, taken with the appropriate sign. The work is positive if the
initial point is higher than the final one and negative if it is lower.
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It follows from this that the work done by gravity does not depend on
the path along which the point of its application moves. Forces possessing
this property are called conservative forces.

(2) Work Done by an Elastic Force. Consider a weight M lying in a
horizontal plane and attached to the free end of a spring (Fig. 13.3).

Let point O on the plane represent the position of the end of the
spring when it is not in tension (40=l, is the length of the unextended

spring) and let it be the origin of our  _ !
coordinate system. Now if we draw the v | oa
weight from its position of equilibrium ,_— “F p

O, stretching the spring to length [, 4
acting on the weight will be the elastic 777777775 777777 777,17
force of the spring F directed towards Fig. 13.3

O. According to Hooke's law, the

magnitude of this force is proportional to the extension of the spring A/=/—
lo. As in our case A/=x, in magnitude

F=c|Al|=c|x|. (13.14)

The factor ¢ is called the stiffness of the spring, or the spring
constant, and its dimension is [c] = kgf/cm. Numerically, the stiffness c is
equal to the force required to extend the spring by 1 cm.

Let us find the work done by the elastic force in the displacement of
the weight from position My(x,) to position M;(x;). As in this case F,=F=
—cx, F,=F.=0, substituting these expressions into Eq. (13.7) we obtain:

(M) %
Ay = J. (—cx)dx:—cjxdng(xg—xf). (13.15)

(Mo) X0

In the obtained formula x, is the initial extension of the spring Al;,
and x, 1s the final extension A/;,. Hence,

C
Asigny = (B4,) = (8,)" . (13.16)

1.e., the work done by an elastic force is equal to half the product of the
stiffness and the difference between the squares of the initial and final
extensions (or compressions) of a spring.

The work is positive if |Al;,| > |Alg,|, 1.e., when the end of the spring
moves towards the position of equilibrium, and negative when |A/,| < |Al,|,
i.e., when the end of the spring moves away from the position of
equilibrium.
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It can be proved that Eq. (13.16) holds for the case when the
displacement of point M is not rectilinear. It follows, therefore, that the
work done by the force F depends only on the quantities Al;, and Alj, and
does not depend on the actual path travelled by M. Consequently, an elastic
force is also a conservative force.

(3) Work Done by Friction. Consider a particle moving on a rough
surface or a rough curve. The magnitude of the frictional force acting on
the particle is fN, where f'is the coefficient of friction and N is the normal
reaction of the surface. Frictional force is directed opposite to the
displacement of the particle, whence F; ,=fN, and from Eq. (13.6),

C
Asiny == (B4, = (8,)" . (13.17)

If the friction force is constant, then A=—F}s, where s 1s the length of
the arc MyM, along which the particle moves.

Thus, the work done by kinetic friction is always negative. It depends
on the length of the arc MyM; and consequently friction is a non-
conservative force.

4. Theorem of the change in the kinetic energy of a particle

Consider a particle of mass m displaced by acting forces from a
position M, where its velocity is vy to a position M; where its velocity is v;.
To obtain the required relation, consider the equation

ma=) F,, (13.18)
k

which expresses the fundamental law of dynamics. Projecting this equation
on the tangent M, to the path of the particle in the direction of motion, we
obtain:

ma, =Y F,. . (13.19)
k

The tangential acceleration in the left side of the equation can be
written in the form

dvo dvds dvo
a :—:——:—U
Yodt dsdt ds

whence, we have:

: (13.20)
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dv
m—vu=) F_. 13.21
25 0= 2 (13.21)

Multiplying both sides of the equation by ds, bring m under the
differential sign. Then, notingthat F.ds=dA;, where dA; is the elementary
work done by the force F;, we obtain an expression of the theorem of the
change in Kinetic energy in differential form:

d

Integrating both parts in the limits of corresponding values of the
variables at points M, and M, we finally obtain:

mo*
2

]deAk. (13.22)

2 2
o 0 S A - (13.23)
9) ) - oMy

Eq. (13.23) states the theorem of the change in the Kinetic energy
of a particle in the final form: The change in the kinetic energy of a
particle in any displacement is equal to the algebraic sum of the work done
by all the forces acting on the particle in the same displacement.

LECTURE 14
THEOREM OF THE CHANGE IN THE KINETIC ENERGY OF A
SYSTEM (continuation).
5. Kinetic energy of a system

The kinetic energy of a system is defined as a scalar quantity T equal
to the arithmetical sum of the kinetic energies of all the particles of the
system:

2
K=" (13.24)
2

Kinetic energy is a characteristic of both the translational and
rotational motion of a system, which is why the theorem of the change in

kinetic energy is so frequently used in problem solutions.
If a system consists of several bodies, its kinetic energy is, evidently,

equal to the sum of the kinetic energies of all the bodies:

K=Y K,. (13.25)
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Let us develop the equations for computing the kinetic energy of a
body in different types of motion.

(1) Translational Motion. In this case all the points of a body have
the same velocity, which is equal to the velocity of the centre of mass.
Therefore, for any point k£ we have v,=v¢, and Eq. (13.24) gives:

Ktrans :kauc -5 [kaj

k

or

2
K s = Zm"—UC=1M Vg, (13.26)
o 2 2
Thus, in translational motion, the kinetic energy of a body is equal to
half the product of the body's mass and the square of the velocity of the
centre of mass. The value of K does not depend on the direction of motion.
(2) Rotational Motion. The velocity of any point of a body rotating
about an axis Oz is vi=wh;, where Ay is the distance of the point from the
axis of rotation and co is the angular velocity of the body. Substituting this
expression into Eq. (13.24) and taking the common multipliers outside of
the parentheses, we obtain:

o'k _1
Krolatwn = Z mk (ka J >

The term in the parentheses is the moment of inertia of the body with
respect to axis z. Thus, we finally obtain:

:lJzof, (13.27)

rotation 2

1.e., in rotational motion, the kinetic energy of a body is equal to half the
product of the body's moment of inertia with respect to the axis of rotation
and the square of its angular velocity. The value of K does not depend on
the direction of the rotation.

(3) Plane Motion. In plane motion, the velocities of all the points of
a body are at any instant directed as if the body were rotating about an axis
perpendicular to the plane of motion and passing through the instantaneous
centre of zero velocity Cy . Hence, by Eq. (13.27),
1 2

plane = EJCVO‘) >

K (13.28)
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where Jo, 1s the moment of inertia of the body with respect to the
instantaneous axis of rotation, and co is the angular velocity of the body.

The quantity Je, in Eq. (13.27) is variable, as the position of the
centre Cp continuously changes with the motion of the body. Let us
introduce instead of J, a constant moment of inertia J- with respect to an
axis through the centre of mass C of the body. By the parallel axis theorem
JCVZJC+Md2, where d=PC. Substituting this expression for J., into Eq.
(13.28) and taking into account that point Cy is the instantaneous centre of
zero velocity and therefore wd=wPC=v., where vc is the velocity of the
centre of mass, we obtain finally:

K =1Mo§ +%Jcc02, (13.29)

plane 2

Thus, in plane motion, the kinetic energy of a body is equal to the
kinetic energy of translation of the centre of mass plus the kinetic energy of
rotation relative to the centre of mass.

6. Some case of computation of work

(1) Work done by forces applied to a
rotating body. The elemental work done by the
force F applied to the body in Fig. 13.4 will be

dA=F.ds=Fhdg,

since ds=hdg, where do is the angle of rotation of
the body.

But it is evident that F.i=m.(F). We shall
call the quantity M= m.(F) the turning moment, or
torque. Thus we obtain:

dA=M.deg, (13.30)

1.e., the elemental work in this case is equal to the product of the torque and
the elemental angle of rotation. Eq. (13.30) is valid when several forces are
acting if it is assume that

M, = Zmz(Fk)'

The work done in a turn through a finite angle ¢, will be
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Py
A:jMqu), (13.31)

0
and, for a constant torque (M,=const.),
A=M ¢,. (13.32)

If acting on a body is a force couple lying in a plane normal to Oz,
then, evidently, M, in Eqgs. (13.30)-(13.32) will denote the moment of that
couple.

Let us see how power is determined in this case. From Eq. (13.30)
we find:

W d4 M. do

At dt

Thus, the power developed by forces acting on a rotating body is
equal to the product of the torque and angular velocity of the body. For the
same power, the torque increases as the angular velocity decreases.

(2) Work done by frictional forces acting on a rolling body. A
wheel of radius R (Fig. 13.5) rolling without slipping on a plane (surface) is
subjected to the action of a frictional force Fg,
which prevents the slipping of the point of contact
B on the surface. The elemental work done by this
force is dA=F.dsz. But point B is the .
instantaneous centre of velocity, and vz=0. As
dsg=vpdt, dszp=0, and for every elemental
displacement dA=0.

Thus, in rolling without slipping, the work
done by the frictional force preventing slipping is zero in any displacement
of the body. For the same reason, the work done by the normal reaction N
is also zero, assuming the body to be non-deformable and force N applied
at point B, as shown in Fig. 13.5a.

The resistance to rolling due to deformation of the surfaces (Fig.
13.5b) creates a couple (N, P) with a moment M=kN, where k is the
coefficient of rolling friction. Then by Eq. (13.30) and taking into account
that the angle of rotation of a rolling wheel is

=M. o.

_ 95
R 9

we obtain:

do
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dA,, =—kNdo = —%Ndsc, (13.33)

where dsc is the elemental displacement of the centre C of the wheel.

If N=const, then the total work done by the forces resisting rolling
will be

A =—kNo, = —%NSC. (13.34)

As the quantity A/R is small, rolling friction can, in the first
approximation, be neglected as compared with other resisting forces.

7. Theorem of the change in the kinetic energy of a system

The theorem proved in §4 is valid for any point of a system.
Therefore, if we take any particle of mass m; and velocity v, belonging to a
system, we have for this particle

m,u° -
d(ﬂj A +dd,
2

where dA°, and dA’; are the elementary work done by the external and
internal forces acting on the particle.

If we write similar equations for all the particles of a system and add
them, we obtain:

2
d[zka‘)k] = a4+ dA.,
k k

k

or

dT =) dA; + dA4; . (13.35)
k k

Equation (13.35) states the theorem of the change in the Kinetic
energy of a system in differential form. Integrating both parts of the
equation in the limits corresponding to the displacement of the system from
some initial position where the kinetic energy is 7j to a position where it is
T;, we obtain:

T-T,=) A+ 4. (13.36)
k k
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This equation states the theorem of the change in kinetic energy in
final form: The change in the kinetic energy of a system during any
displacement is equal to the sum of the work done by all the external and
internal forces acting on the system in that displacement.

(1) Non-deformable systems. A non-deformable system is defined
as one in which the distance between the points of application of the
internal forces does not change during the motion of the system. Special
cases of such systems are a rigid body and an inextensible string.

Let two points B; and B, of a
non-deformable system (Fig. 13.6) be
acting on each other with forces F, /
and F', (Filz——Fizl and let their |
velocities at some instant be v; and v,.
Their displacements in a time interval
df will be dSlzl)ldf and dSlledf Flg 13.6
directed along vectors v; and v,. But as
line BB, is non-deformable, it follows from the laws of kinematics that the
projections of vectors v; and v,, and consequently of the displacements ds;
and ds,, on the direction of BB, will be equal, i.e., B;B"1=B,B",. Then the
elemental work done by forces F';, and F,; will be equal in magnitude and
opposite in sense, and their sum will be zero. This holds for all internal
forces in any displacement of a system.

We conclude from this that the sum of the work done by all the
internal forces of a non-deformable system is zero, and Eqgs. (13.35) or
(13.36) take the form

dT=YdA; or T,-T,=> A . (13.37)
k k

(2) Systems with ideal constraints. Consider a system with
con—straints that do not change with time. Dividing all the external and
internal forces acting on the particles of the system into active forces and
the reactions of the constraints, Eq. (13.35) can be written in the form:

dT =) dA} + ) dA;
k k

where dA% is the elementary work done by the external and internal forces
acting on the k-th particle of the system, and dA'; is the elementary work
done by the reactions of the external and internal constraints acting on that
particle.
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We see that the change in the kinetic energy of the system depends
on the work done by both the acting forces and the reactions of the
constraints. However, we can introduce the concept of "ideal" mechanical
systems in which constraints do not affect the change in kinetic energy in
the motion of the system. Such constraints should, evidently, satisfy the
condition:

> dA4; =0. (13.38)
k

If for constraints that do not change with time the sum of the work
done by all the reactions in an elementary displacement of a system is zero,
such constraints are called ideal. Here are some known examples of ideal
constraints.

It was established that if a constraint is a fixed smooth surface (or
curve), for which friction can be neglected, the work done by the reaction
N in the motion of a body along that surface (curve) is zero. Then, it was
shown that, neglecting deformation, if a body rolls without slipping on a
rough surface, the work done by the normal reaction N and the force of
friction F (i.e., the tangential component of the reaction) is zero. Also, the
work done by the reaction R of a hinge is, neglecting friction, zero, as in
any displacement of the system the point of application of force R is fixed.
Finally, if the material particles B; and B, in Fig. 13.6 are assumed to be
connected by a rigid rod B,B,, the forces F'}, and F',; will be the reactions
of the constraint; the work of each of these reactions in the displacement of
the system is not zero, but their sum, as shown, is zero. Thus, all the
mentioned constraints can, with the assumptions made, be regarded as
ideal.

In the case of a mechanical system subject solely to ideal constraints
that do not change with time we obviously have:

dT =Y dA; or T,-T,=) A/ (13.39)
k k

Thus, the change in the kinetic energy of a system with ideal
constraints that do not change with time is, in any displacement, equal to
the sum of the work done in that displacement by the active external and
internal forces.

All the foregoing theorems made it possible to exclude the internal
forces from the equations of motion, but all the external forces, including
the immediately unknown reactions of the external constraints, entered the
equations. The theorem of the change in kinetic energy is useful because in
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the case of ideal constraints that do not change with time it makes it
possible to exclude all the immediately unknown reactions of the
constraints from the equations of motion.

8. Conservative force field and force function

The work done in a displacement MM, by a force F applied at a
point M of a body is computed according to Eq. (13.7):
(M) (M)
Ay = j dA = j (F.dx+F,dy + F.dz). (13.40)

(My) (My)

As pointed out in §2, the integral on the right can be evaluated
without knowledge of the law of motion involved (i.e., of the dependence
of x, y, z on time) only if the force depends solely on the location of the
point, i.e., on its x, y, z coordinates. Such forces are said to form a force
field, or field of force. 4 force field is defined as a region of space in which
any article experiences a force of certain magnitude and direction.
Examples are planetary or stellar gravitational fields. As any force can be
defined by its projections on a set of coordinate axes, a force field can be
described by the equations:

F =®,(x,y,z), Fy:(l)z(x,y,z), F =®,(x,y,2). (13.41)

But in the most general case, to compute the work done by such
forces, in Eq. (13.40) it is necessary to go over to one variable in the
integrand; for example, one must know the dependencies y=fi(x) and
z=f,(x), which give the spatial equation of the curve that is the path of
particle M. Consequently, in the most general case the work done by the
forces constituting a force field depends on the type of path of the point of
application of the relevant force.

However, if the integrand in Eq. (13.40), which represents the
elementary work done by force F, is the full differential of a function
Ux,p,2), 1.e., if

dA=dU(x,y,z), or Fdx+Fdy+F.dz=dU(x,y,z), (13.42)
the work 4 can be computed without knowing the path of point M.
The function U of the coordinates x, y, z, the differential of which

equals the elementary work, is called a force function. A force field for
which there is a force function is called a conservative force field, and the
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forces acting in that field are called conservative forces. We shall regard a
force function as a unique function of coordinates.
Substituting the expression for d4 from Eq. (13.42) into Eq. (13.40),
we obtain:
(M)
Ay = [ dU(x,,2)=U, - U, (13.43)

(My)

where U,=U(x1,)1,z1) and U,=U(x,,),,2;) are the values of the force
functions at points M; and M, of the field, respectively. Consequently, the
work done by a conservative force acting on a moving particle equals the
difference between the values of the force function at the terminal and
initial points of the displacement and does not depend on the particle's path.
In a displacement along a closed path U,=U,, and the work done by a
conservative force is zero.

The basic property of a conservative force field is that the work done
by its forces acting on a moving material particle depends only on the
particle's initial and final positions and does not depend on its path
followed or the law of motion.

When the work done by a force depends on the path or law of motion
of the point at which it is applied, the force is said to be nonconservative, or
dissipative. Examples are friction and the resistance of a medium.

If the relationship (13.42) is found to apply, the force function can be
determined from the equation

U=jdA+C, or U:J(dex+Fydy+dez)+C, (13.44)

where C is a constant having any value [it is apparent from Eq. (13.43) that
work does not depend on C]. However, it is conventionally assumed that at
some point 0, called the "zero point", Upy=0, and C is determined on that
basis.

9. Potential energy

For conservative forces we can introduce the concept of potential
energy as a measure of the capacity of a particle for doing work by virtue
of its position in the force field. In order to compare different "capacities
for doing work", we must agree on the choice of a zero point 0, in which
we assume the capacity to do work to be zero (the choice of the zero point,
as of any initial point or origin, is arbitrary). The potential energy of a
particle in any configuration M is defined as the scalar quantity V equal to

79



the work done on the particle by the forces of a field in the passage from
configuration M to the zero configuration:

V=40,

It follows from the definition that potential energy is dependent on
the coordinates of the particle M, i.e., V=V(x,y,z).

Assuming that the zero points of the functions V(x,y,z) and U(x,y,z)
coincide, we have Uy=0 and, by Eq. (13.43), A0=Us—U=-U, where U is
the force function at point M of the field; whence,

V(x,y,z) :_U(xayaz)a

i.e., the potential energy at any point of a force field is equal to the
magnitude of the force function at that point taken with the opposite sign.

It is thus apparent that in investigating the properties of a
conservative force field we can replace the force function with potential
energy. In particular, in computing the work done by a conservative force
we can use instead of Eq. (13.43) the formula

Ay =V =V, (13.45)

Thus, the work done by a conservative force is equal to the
difference between a moving particle's potential energy in its initial and
final positions.

10. The law of conservation of mechanical energy

Let us assume that all the external and internal forces acting on a
system are conservative forces. Then, for any particle belonging to the
system, the work done by the applied forces is

Ak = VkO - Vkl >
and for all the external and internal forces

ZAk:szO_ZVkl =V, -V,
k k k

where V) 1s the potential energy of the whole system.
Substituting this expression for work into Eq. (13.36), we obtain:
I,-1,=V,-V, or T,+V,=V,+1,=const.

Thus, in the motion of a system subjected to the action of only
conservative forces, the sum of the kinetic and potential energies of the
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system remains constant for any configuration. This i1s the law of
conservation of mechanical energy, which is a particular case of the
general physical law of conservation of energy. The quantity 74V is called
the total mechanical energy of the system.

If the acting forces include dissipative forces, such as friction, the
total mechanical energy of the system will decrease during its motion due
to transformation into other forms of energy, e.g., thermal energy.

The whole meaning of the foregoing law becomes apparent when it
is considered in connection with the general physical law of conservation
of energy. However, in solving purely mechanical problems, the theorem of
the change in the kinetic energy of a system can always be immediately
applied

LECTURE 15
THEOREM OF THE MOTION OF THE CENTER OF MASS OF A
SYSTEM
1. The differential equations of motion of a system

Suppose we have a system of n particles. Choosing any particle of
mass my, belonging to the system, let us denote the resultant of all the
external forces acting on the particle (both active forces and the forces of
reaction) by the symbol F;, and the resultant of all the internal forces by
F',. If the particle has an acceleration a,, then, by the fundamental law of
dynamics,

—F|© (@)
ma, =K~ +F".

Similar results are obtained for any other particle, whence, for the
whole system, we have:

ma, =F° +F",
mya, =F," + F,",
2772 2 2 (151)

...........................

These equations, from which we can develop the law of motion of any
particle of the system, are called the differential equations of motion of a
system in vector form. In the most general case the forces in the right side
of the equations depend on time, coordinates of the particles of the system,
and velocities.
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By projecting Eqgs. (15.1) on coordinate axes, we can obtain the
differential equations of motion of a given system in terms of the
projections on these axes.

The complete solution of the principal problem of dynamics for a
system would be to develop the equation of motion for each particle of the
system from the given forces by integrating the corresponding differential
equations. For two reasons, however, this solution is not usually employed.
Firstly, the solution is too involved and will almost inevitably lead into
insurmountable mathematical difficulties. Secondly, in solving problems of
mechanics it is usually sufficient to know certain overall characteristics of
the motion of a system, without investigating the motion of each particle.
These overall characteristics can be found with the help of the general
theorems of system dynamics, which we shall now study.

The main application of Eqgs. (15.1) or their corollaries will be to
develop the respective general theorems.

2. Theorem of motion of centre of mass

In many cases the nature of the motion of a system (especially of a
rigid body) is completely described by the law of motion of its centre of
mass. To develop this law, let us take the equations of motion of a system
(15.1) and add separately their left and right sides. We obtain:

> ma, =) F+> F". (15.2)
k k k

Let us transform the left side of the equation. For the radius vector of
the centre of mass we have, from Eq. (12.2),

kark = Mr,..
k

Taking the second derivative of both sides of this equation with respect
to time, and noting that the derivative of a sum equals the sum of the
derivatives, we find that

2 2
kad l;k :Mdl;c
— " dt

9

or

> ma,=Ma,, (15.3)
k
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where ac is the acceleration of the centre of mass of the system. As the
internal forces of a system is equal zero by substituting all the developed
expressions into Eq. (15.2), we obtain finally:

D> ma, =) F. (15.4)
k k

Eq. (15.4) states the theorem of the motion of the centre of mass of a
system. Its form coincides with that of the equation of motion of a particle
of mass m = M where the acting forces are equal to F“). We can therefore
formulate the theorem of the motion of the centre of mass as follows:
The centre of mass of a system moves as if it were a particle of mass equal
to the mass of the whole system to which are applied all the external forces
acting on the system.

Projecting both sides of Eq. (15.4) on the coordinate axes, we obtain:

d d’y

2 2
Xc (e) c (e) d’z. (e)
=) »F’7, M—=>F", M—==) F. 15.5
dl‘2 ; kx dtz Zk: dtz ; k ( )

M

These are the differential equations of motion of the centre of mass in
terms of the projections on the coordinate axes.

The theorem is valuable for the following reasons:

(1) It justifies the use of the methods of particle dynamics. It follows
from Egs. (15.5) that the solutions developed on the assumption that a
given body is equivalent to a particle define the law of motion of the centre
of mass of that body. Thus, these solutions have a concrete meaning.

In particular, if a body is in translational motion, its motion is
completely specified by the motion of its centre of mass, and consequently,
a body in translatory motion can always be treated as a particle of mass
equal to the mass of the body. In all other cases, a body can be treated as a
particle only when the position of its centre of mass is sufficient to specify
the position of the body

(2) The theorem makes it possible, in developing the equation of
motion for the centre of mass of any system, to ignore all unknown internal
forces. This is of special practical value.

[TockonmbKy MeXaHHMYECKas CHUCTEMa, 3TO TPEXJE BCETO COBOKYII-
HOCTh MaTEpUAIBHBIX TOYEK, TO TOTJAa KOJUYECTBO JBHIKCHHUS CHCTEMBI
TOUYEK — CyMMa KOJTMYECTB JBMKCHHSI OTACTBHBIX €€ YacTel

3. The law of conservation of motion of centre of mass
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The following important corollaries arise from the theorem of the
motion of centre of mass:
(1) Let the sum of the external forces acting on a system be zero:

D F2=0.
k

It follows, then, from Eq. (15.4) that ac = 0 or v¢ = const.

Thus, if the sum of all the external forces acting on a system is zero,
the centre of mass of that system moves with velocity of constant
magnitude and direction, i.e., uniformly and rectilinearly. In particular, if
the centre of mass was initially at rest, it will remain at rest. The action of
the internal forces, we see, does not affect the motion of the centre of mass.

(2) Let the sum of the external forces acting on a system be other than
zero, but let the sum of their projections on one of the coordinate axes (axis
x, for instance) be zero:

Y FY=0.

k

The first of Egs. (15.5) then gives

2
d );C =0 or %:UCX = const .
dt dt
Thus, if the sum of the projections on an axis of all the external forces
acting on a system is zero, the projection of the velocity of the centre of
mass of the system on that axis is a constant quantity. In particular, if at the
initial moment v, = 0, it will remain zero at any subsequent instant, i.e.,
the centre of mass of the system will not move along axis x (xc = const.).
The above results express the law of conservation of motion of the
centre of mass of a system.

4. Linear momentum of a system

The linear momentum, or simply the momentum, of a system is defined
as the vector quantity Q equal to the geometric sum (the principal vector)
of the momenta of all the particles of the system:

Q=> mp,. (15.6)

It can be seen from the diagram that, irrespective of the velocities of
the particles (provided that they are not parallel) the momentum vector can
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take any value, or even be zero when the polygon constructed with the
vectors myvy as its sides is closed. Consequently, the quantity Q does not
characterise the motion of the system completely.

Let us develop a formula with which it is much more convenient to
compute Q and also to explain its meaning. It follows from Eq. (12.2) that

kark = Mr,.
k

Differentiating both sides with respect to time, we obtain:

dr, dr,
m ——=M—%= or mv, =My ..
z k dt dt Zk: kVk c

k
whence we find that
Q=Mv,.. (15.7)

1.e., the momentum of a system is equal to the product of the mass of the
whole system and the velocity of its centre of mass. This equation is
especially convenient in computing the momentum of rigid bodies.

It follows from Eq. (15.7) that if the motion of a body (or a system) is
such that the centre of mass remains motionless, the momentum of the
body is zero. Thus, the momentum of a body rotating about a fixed axis
through its centre of mass is zero.

If, on the other hand, a body is in relative motion, the quantity Q will
not characterise the rotational component of the motion about the centre of
mass. Thus, for a rolling wheel, Q = Mv, regardless of how the wheel
rotates about its centre of mass C.

We see, therefore, that momentum characterises only the translatory
motion of a system, which is why it is often called linear momentum.

5. Linear momentum of a system

Consider a system of n particles. Writing the differential equations of
motion (15.1) for this system and adding them, we obtain:

> ma, =) F+> F".
k k k

From the property of internal forces the last summation is zero.
Furthermore,
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d dQ
a, =— vV, =—— R
Zk: T Zk:mk Yot
and we finally have

d—szEfe). (15.8)
d 5

Eq. (15.8) states the theorem of the change in the linear momentum
of a system in differential form: The derivative of the linear momentum of
a system with respect to time is equal to the geometrical sum of all the
external forces acting on the system.

In terms of projections on cartesian axes we have

do do do
=N EO 2N R =N RO 15.9
di Ekl b Ekl Y dr zk: “ (159

Let us develop another expression for the theorem. Let the momentum
of a system be Q at time ¢ = 0, and at time ¢, let it be Q.
Multiplying both sides of Eq. (15.8) by dt and integrating, we obtain:

Q-Q,=) [Fdt,
k o

or

Q-Q,=28/, (15.10)
k
as the integrals to the right give the impulses of the external forces.

Eq. (15.10) states the theorem of the change in the linear
momentum of a system in integral form: The change in the linear
momentum of a system during any time interval is equal to the sum of the
impulses of the external forces acting on the body during the same interval
of time.

In terms of projections on cartesian axes we have

O, — 0O, :ZSIE;)’
k

0, -0, =5t (15.11)
k

le _QOZ :ZSIEE)

k
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Consequently, the theorem of the motion of centre of mass and the
theorem of the change in the momentum of a system are, in effect, two
forms of the same theorem. Whenever the motion of a rigid body (or
system of bodies) is being investigated, both theorems may be used, though
Eq. (15.7) 1s usually more convenient.

For a continuous medium (a fluid), however, the concept of centre of
mass of the whole system is virtually meaningless, and the theorem of the
change in the momentum of a system is used in the solution of such
problems. This theorem is also very useful in investigating the theory of
impact and jet propulsion.

The practical value of the theorem is that it enables us to exclude from
consideration the immediately unknown internal forces (for instance, the
reciprocal forces acting between the particles of a liquid).

6. The law of conservation of linear momentum

The following important corollaries arise from the theorem of the
change in the momentum of a system:
(1) Let the sum of all the external forces acting on a system be zero:

D FY=0.
k

It follows from Eq. (15.8) that in this case Q = const. Thus, if the sum
of all the external forces acting on a system is zero, the momentum vector
of the system is constant in magnitude and direction.

(2) Let the external forces acting on a system be such that the sum of
their projections on any axis Ox is zero:

D FY=0.
k

It follows from Eqgs. (15.9) that in this case O, = const. Thus, if the
sum of the projections on any axis of all the external forces acting on a
system is zero, the projection of the momentum of that system on that axis
1s a constant quantity.

These results express the law of conservation of the linear momentum
of a system. It follows from the above that internal forces are incapable of
changing the total momentum of a system.

LECTURE 16
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THEOREM OF THE CHANGE IN THE ANGULAR MOMENTUM
OF A SYSTEM
1. Theorem of the change in the angular momentum of a particle
(the principle of moments)

Often, in analysing the motion of a particle, it is necessary to consider
the change not in the vector mv itself but in its
moment. The moment of the vector mv with
respect to any centre O or axis z is denoted by
the symbol my(mv) or m,(mv) and is called the
moment of momentum. or angular momentum
with respect to that centre or axis. The moment
of vector mv is calculated in the same way as the
moment of a force. Vector mv is considered to
be applied to the moving particle. In magnitude Fig. 16.1
|mo(mv)|=mvh, where h is the perpendicular
distance from O to the position line of the vector mv (see Fig. 16.1).

(1) Principle of moments about an axis. Consider a particle of mass
m moving under the action of a force F. Let us establish the dependence
between the moments of the vectors mv and F with respect to any fixed
axis z:

m_(F)=xF, - yF. (16.1)

Similarly, form m.(mv), and taking m out of the parentheses, we have:
m_(mv) =m(xv, — yv, ). (16.2)
Differentiating this equation with respect to time, we obtain:

d dx dy dvo, dv
- — - — + — X .
[m, (mv)] m( v, Ux) [mx oy — j

The first member in the right-hand side of the equation is zero. From
Eq. (16.1), the second member is equal to m.(F), since, from the
fundamental law of dynamics,
dv
= =F, mdux =F.
a7 dt

Finally, we have:

m
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i[mz(ml))] =m_(F). (16.3)
dt

This equation states the principle of moments about an axis: 7he
derivative of the angular momentum oj a particle about any axis with
respect to time is equal to the moment of the acting force about the same
axis.

From Eq. (16.3) it follows that if m.(F)=0, then m.(mv)=const, i.e. if
the moment of the acting force about an axis is zero, the angular
momentum of this particle about this axis is constant in magnitude and
direction.

(2) Principle of moments about a centre. Let us find for a particle
moving under the action of a force F (Fig. 16.1) the relation between the
moments of vectors mv and F with respect to any fixed centre O. It was
shown early

m,(F)=rxF.
Similarly,
m,(mv)=rxmv.

Vector my(F) is normal to the plane through O and vector F, while
vector My(mv) is normal to the plane through O and vector mv.
Differentiating the expression My(mv) with respect to time, we obtain:

d dr dv
E[rxmn]:(axmv)Jr(rmej=(1)><m1))+(r><ma).

But vxmv= 0, as the vector product of two parallel vectors, and
ma=F. Hence,

%[rxmv]:er, (16.4)
or

d

< rxmo] = m, (F). (16.5)

This is the principle of moments about a centre: The derivative of
the angular momentum of a particle about any fixed centre with respect to
time is equal to the moment of the force acting on the particle about the
same centre. An analogous theorem is true for the moments of vector mv
and force F with respect to any axis z, which is evident if we project both
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sides of Eq. (16.5) on that axis. This was proved directly in item (1). The
mathematical statement of the theorem of moments about an axis is given
in Eq. (16.3) above.

From Eq. (16.5) it follows that if my(F)=0, then my(mv)=const., i.e., if
the moment of the acting force relative to a centre is zero, the angular
momentum of this particle about the same centre is constant in magnitude
and direction. This result is of great importance in the case of motion under
the action of a central force.

2. Total angular momentum of a system

The total angular momentum of a system with respect to a centre O
is defined as the quantity Ky equal to the geometrical sum of the angular
momenta of all the particles of the system with respect to that centre.

K, =Y m,(mv,). (16.6)

The angular momenta of a system with respect to each of three
rectangular coordinate axes are found similarly:

K. =) m(mv,), K ,=>m@my,), K =Y m(mpv). (16.7)
k k k

K. K, and K. are the respective projections of vector K, on the
coordinate axes.

Just as the momentum of a system is a
characteristic of its translational motion, the total
angular momentum of a system is a characteristic of
its rotational motion.

To understand the physical meaning of K, and
obtain the formulas necessary for problem solutions,
let us compute the angular momentum of a body
rotating about a fixed axis (Fig. 16.2). As usual, we =
shall determine vector Ky in terms of its projections
K. K,, and K..

First, let us find the formula for determining K, i.e., the angular
momentum of a rotating body with respect to the axis of rotation.

The linear velocity of any particle of the body at a distance 4; from
the axis is wh;. Consequently, for that particle mz(mknk)zmkl)khkzmkoahkz.
Then, taking the common multiplier ® outside of the parentheses, we
obtain for the whole body:

Fig. 16.2
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K. = Zmz(mknk) = [kahkzj(’)'

The quantity in the parentheses is the moment of inertia of the body
with respect to axis z. We finally obtain:

K.=J.o. (16.8)

Thus, the angular momentum of a rotating body with respect to the
axis of rotation is equal to the product of the moment of inertia of the body
and its angular velocity.

If a system consists of several bodies rotating about the same axis,
then, apparently,

K =J.o+J,0,+...J, 0. (16.9)

The analogy between linear momentum of a system and angular
momentum will be readily noticed: the momentum of a body is the product
of its mass (the quantity characterising the body's inertia in translational
motion) and its velocity; the angular momentum of a body is equal to the
product of its moment of inertia (the quantity characterising a body's inertia
in rotational motion) and its angular velocity.

Let us now compute the quantities K, and K,. As in the determination
of the moment of a force, to determine m,(m;v;) we must project vector
mvy on plane Oyz, i.e., on axis y', and find the moment of the projection
with respect to point O. We obtain m(mv)=(mucosoy)z,. But
vicosa=mhicoso=mx; as from Fig. 16.2 it is apparent that Aicoso,=x;.
Consequently, taking the common multiplier outside of the parentheses, we
find that

K = me(mkl)k) = —(kaxkzk)co.

The sum in the parentheses is the product of inertia J,,. A similar
expression is obtained for K, with y; substituted for x;. Finally, we obtain:

K.=-J.o, K =-J,0 (16.10)

Thus, the angular momentum of a rotating body with respect to a
centre O on the axis of rotation Oz is a vector K, whose projections on the
X, y, z axes are given by the formulas (16.8) and (16.10). It will be observed
that in the most general case vector Ky is not directed along the axis of
rotation Oz. But if the axis of rotation is, for point O, the principal axis of
inertia of the body (in particular, the axis of symmetry), then J.=/,,=0, and
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K.=K,=0 and Ky=K.. Consequently, if a body rotates about an axis that is
its principal axis of inertia with respect to point O (or about its axis of
symmetry), then vector Ky is directed along the axis of rotation and is
equal in magnitude to K, i.e., to J..

3. Theorem of the change in the total angular momentum of a
system (the principle of moments)

The principle of moments, which was proved for a single particle, is
valid for all the particles of a system. If, therefore, we consider a particle of
mass m; and velocity v, belonging to a system, we have for that particle:

g (m0,)] = m )+ mg (),

where F,° and F,’ are the resultants of all the external and internal forces
acting on the particle.

Writing such equations for all the particles of the system and adding
them, we obtain:

%|:Zm0(mkl)k):| = Zmo(F:)+ sz(Fli)'

But from the properties of the internal forces of a system, the last
summation vanishes. Hence, taking into account Eq. (16.6), we obtain
finally:

dK,
dt

=> m,(F)). (16.11)

This equation states the following principle of moments for a
system: The derivative of the total angular momentum of a system about
any fixed centre with respect to time is equal to the sum of the moments of
all the external forces acting on that system about that centre.

Projecting both sides of Eq. (16.11) on a set of fixed axes Oxyz we
obtain:

dK dK dK
=N (F), —2=Ym (F), === m (F). 16.12
dt ; x( k) dt Zk: y( k) dt - z( k) ( )

Equations (16.12) express the principle of moments with respect to
any fixed axis.
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The theorem just proved is widely used in studying the rotation of a
body about a fixed axis, and also in the theory of gyroscopic motion and
the theory of impact. This, however, is not all. It was proved in the course
of kinematics that the most general motion of a body is a combination of a
translation together with some pole and a rotation about that pole. If the
pole is located in the centre of mass, the translational component of the
motion can be investigated by applying the theorem of the motion of the
centre of mass, and the rotational component, by the theorem of moments.
This indicates the theorem's importance in studying the motion of free
bodies and, in particular, in studying plane motion.

The principle of moments is also convenient in investigating the
rotation of a system, because, analogous to the theorem of the change in
linear momentum, it makes it possible to exclude from consideration all
immediately unknown internal forces.

Theorem of Moments With Respect to a Centre of Mass: For
axes in translational motion together with the centre of mass of a system,
the theorem of moments with respect to the centre of mass has the same
form as with respect to a fixed, centre.

K => m.(F). (16.13)
dt 5

4. The law of conservation of the total angular momentum

The following important corollaries can be derived from the
principle of moments.

(1) Let the sum of the moments of all the external forces acting on a
system with respect to a centre O be zero:

> m,(F;)=0.

It follows, then, from Eq. (16.11) that Ko=const. Thus, if the sum of
the moments of all external forces acting on a system taken with respect to
any centre is zero, the total angular momentum of the system with respect
to that centre is constant in magnitude and direction.

(2) Let the external forces acting on a system be such that the sum of
their moments with respect to any fixed axis Oz is zero:

> m_(F{)=0.
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It follows, then, from Eqs. (16.12) that K.=const. Thus, if the sum of
the moments of all the external forces acting on a system with respect to
any axis is zero, the total angular momentum of the system with respect to
that axis is constant.

These conclusions express the law of conservation of the total
angular momentum of a system. It follows from them that internal forces
cannot change the total angular momentum of a system.

Rotating Systems. Consider a system rotating about an axis Oz
which is fixed or passes through the centre of mass. By Eq. (16.8), K=/ o,
and if

> m,(F)=0.

then

J_ o= const.

This leads us to the following conclusions:

(a) If a system is non-dejormable (a rigid body), then J,=const,
whence w=const. That is, a rigid body will rotate about a fixed axis with a
constant angular velocity.

(b) If a system is deformable, it will have particles which, under the
action of internal (or external) forces, may move away from the axis,
thereby increasing J,, or approach the axis, thereby decreasing J.. But as
J.w=const, the angular velocity of the system will decrease as the moment
of inertia increases, and increase as the moment of inertia decreases. Thus,
the action of internal forces can change the angular velocity of a rotating
system, as the constancy of K, does not, in the general case, mean the
constancy of .

5. Rotation of a rigid body

Let there be a system of forces F |, F>°, ..., F,” acting on a rigid body
with a fixed axis of rotation z. Also acting on the body are the reactions R,
and Ry of the bearings. As the moments of forces R, and R with respect
to the axis are zero, we have

dK

V4 e

dt :

where

b
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M= m(F).
k

We shall call the quantity M.® the turning moment, or torque.

Substituting the expression K=/, into the foregoing equation, we
obtain:

2
792y or L0y (16.14)
dt dt

Eq. (16.14) is the differential equation of the rotational motion of a
rigid body. It follows from the equation that the product of the moment of
inertia of a body with respect to its axis of rotation and its angular
acceleration is equal to the turning moment:

Je=M:. (16.15)

Equation (16.15) shows that, for a given torque M.°, the greater the
moment of inertia of a body, the less the angular velocity, and vice versa.
Thus, we see that in rotational motion the moment of inertia of a body
actually plays the same role as mass in translational motion, i.e., it is the
measure of a body's inertia in rotational motion.

Note the following special cases:

(1) If M.*=0, w=const, i.c., the rotation is uniform;

(2) If M.*=const, e=const., i.e., the rotation is uniformly variable.

Eq. (16.14) is analogous in form to the differential equation of
rectilinear motion of a particle; therefore, the methods of integration are
also analogous.

6. Plane Motion of a Rigid Body

The position of a body performing plane motion is specified at any
instant by the position of any pole and the angle of rotation of the body
about that pole. Dynamical problems are much more simple solved if the
centre of mass C of a body is taken as the pole and the position of the body
i1s defined by coordinates x¢, yc, and angle ¢ (the body is depicted as
intersected by a plane parallel to the plane of motion and passing through
point C).

Let there be acting on the body a coplanar system of external forces
F°, F,°, ..., F,°. The equation of motion of point C can be found from the
theorem of the motion of centre of mass:
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ma. =) F, (16.16)
k

and the rotation about C is given by Eq. (16.14), since the theorem from
which it was derived is also valid for the motion of a system about the
centre of mass. Finally, after projecting both sides of Eq. (16.16) on the
coordinate axes, we obtain:

maCx:ZFk‘;, macy:ZFe’ ch:ZmC(F]fz)’ (16.17)
k k k

or

d
-3, Zw, @ Z@@; (16.18)
k

Eqgs. (16.18) are the differential equations of plane motion of a rigid
body. With their help we can develop the equation of motion of a body if
the forces are given or we can determine the principal vector and principal
moment of the acting forces if the law of motion is known.

LECTURE 17
D'ALEMBERT'S PRINCIPLE

All the methods of solving the problems of dynamics examined up
till now were based on equations derived either directly from Newton's
laws or from the general theorems, which are corollaries of those laws.
However, the equations of motion or equilibrium conditions of a
mechanical system can also be obtained on the basis of other general
propositions called the principles of mechanics. We shall see that in many
cases application of those principles offers better methods of problem
solutions. In this chapter we shall examine one of the general principles of
mechanics known as D'Alembert's principle.

1. D'Alembert's principle

Let there be a system of n material particles. Selecting any particle of
mass my, assume it to be acted upon by external and internal forces F;° and
F,' (which include both active forces and the reactions of constraints),
which impart it an acceleration a; with respect to an inertial reference
frame.

Let us introduce the quantity
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® =-ma, (17.1)

with the dimension of force. The vector quantity equal in magnitude to the
product of the particle's mass and acceleration and directed in the opposite
sense of the acceleration is called the force of inertia of that particle
(sometimes the D'Alembert inertia force).

Motion of a particle, we then find, satisfies the following
D'Alembert's principle for a material particle: If, at any moment of time,
to the effective forces ¥, and ¥, acting on the particle is added the inertia
force @y, the resultant force system will be in equilibrium, i.e.,

®, +F +F, =0, (17.2)

It will be readily observed that D'Alembert's principle is equivalent
to Newton's second law, and vice versa. For Newton's second law gives for
this particle

ma, =F, +F,.

Transferring m;a, to the right-hand side of the equation, and taking
into account the notation (17.1), we arrive at Eq. (17.2). Conversely, by
transferring F,' to the other side of Eq. (17.2), and taking into account
(17.1), we obtain the formula expressing Newton's second law.

Reasoning similarly for all the particles of the system, we arrive at
the following result, which expresses D'Alembert's principle for a
system: If, at any moment of time, to the effective external and internal
forces acting on every particle of a system are added the respective inertia
forces, the resultant force system will be in equilibrium, and the equations
of statics will apply to it.

Mathematically D'Alembert's principle is expressed by a set of n
simultaneous vector equations of the form (17.2) which, apparently, are
equivalent to the differential equations of motion of a system.

The value of D'Alembert's principle is that, when directly applied to
problems of dynamics, the equations of motion of a system can be written
in the form of the well-known equations of equilibrium; this makes for
uniformity in the approach to problem solutions and usually greatly
simplifies the computations. Furthermore, when used in conjunction with
the principle of virtual displacement, which will be examined in the
following chapter, D'Alembert's principle yields a new general method of
solution of problems of dynamics.

In applying D'Alembert's principle it should be remembered that, like
the fundamental law of dynamics, it refers to motion considered with
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respect to an inertial frame of reference. That means that acting on the
particles of the mechanical system whose motion is being investigated are
only the external and internal forces F,° and F, that appear as a
consequence of the interactions of the particles of the system among
themselves and with bodies not belonging to the system; it is under the
action of those forces that the particles of the system are moving with their
respective accelerations a;. The inertia forces mentioned in D'Alembert's
principle do not act on the moving particles [otherwise, by Egs. (17.2), the
points would be at rest or in uniform motion in which case, as is apparent
from Eq. (17.1), there would be no inertia forces]. The introduction of
inertia forces is but a device making it possible to examine the equations of
dynamics by the simpler methods of statics.

We know from statics that the geometrical sum of balanced forces
and the sum of their moments with respect to any centre O are zero; we
know, further, from the principle of solidification that this holds not only
for forces acting on a rigid body but for any deformable system. Thus,
according to D'Alembert's principle, we must have:

> (@, +F +F)=0
k

. ; (17.3)
> (m,(@,)+m, (F)+m,(F})) =0
k
Let us introduce the following notation:
2@, =0, My=>m,(®,), (17.4)
k k

The quantities ® and M, are respectively the principal vector of the
inertia forces and their principal moment with respect to a centre O.
Taking into account that the sum of the internal forces and the sum of their
moments are each zero, we obtain:

DE+®=0, > m,(F)+Mj=0. (17.5)
k k

The use of Egs. (17.5), which follow from D'Alembert's principle,
simplifies the process of problem solution because the equations do not
contain the internal forces. Actually, Eqgs. (17.5) are equivalent to the
equations expressing the theorems of the change in the momentum and the
total angular momentum of a system, differing from them only in form.
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Egs. (17.5) are especially convenient in investigating the motion of a
rigid body or a system of rigid bodies. For the complete investigation of
any deformable system these equations, however, are insufficient.

For the projections on a set of coordinate axes, Eqgs. (17.5) give
equations analogous to the corresponding equations of statics. To use these
equations for solving problems we must know the principal vector and the
principal moment of the inertia forces.

2. The principal vector and the principal moment of the inertia forces
of a rigid body

It follows from Egs. (17.4) that a system of inertia forces applied to a
rigid body can be replaced by a single force equal to @ and applied at the
centre O, and a couple of moment M,". The principal vector of a system, it
will be recalled, does not depend on the centre of reduction and can be
computed at once. Taking into account Eq. (17.1), we will have:

®=-> ma, =-Ma,. (17.6)
k

Thus, the principal vector of the inertia forces of a moving body is
equal to the product of the mass of the body and the acceleration of its
centre of mass, and is opposite in direction to the acceleration.

If we resolve the acceleration ac into its tangential and normal
components, then vector @ will resolve into components

® =-Ma., ® =-Ma’. (17.7
C n C

T

Let us determine the principal moment of the inertia forces for
particular types of motion.

(1) Translational motion. In this case a body has no rotation about
its centre of mass C, from which we conclude that

> m,(F)=0,

and Eq. (17.5) gives M~=0.
Thus, in translational motion, the inertia forces of a rigid body can
be reduced to a single resultant ® through the centre of mass of the body.
(2) Plane motion. Let a body have a plane of symmetry, and let it be
moving parallel to the plane. By virtue of symmetry, the principal vector
and the resultant couple of inertia forces lie, together with the centre of
mass C, in that plane.
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Therefore, placing the centre of reduction in point C, we obtain from
Eq. (17.5)

Mg = _Zmo(F/f)-
k
On the other hand
ZmO(F,f) =J€.
k

We conclude from this that
M?:—JCS. (17.8)

Thus, in such motion a system of inertia forces can be reduced to a
resultant force ® [Eq. (17.6)] applied at the centre of mass C and a couple
in the plane of symmetry of the body whose moment is given by Eq. (17.8).
The minus sign shows that the moment M." is in the opposite direction of
the angular acceleration of the body.

(3) Rotation about an axis through the centre of mass. Let a body
have a plane of symmetry, and let the axis of rotation Cz be normal to the
plane through the centre of mass. This case will thus be a particular case of
the previous motion. But here a~=0, and consequently, ®=0.

Thus, in this case a system of inertia forces can be reduced to a
couple in the plane of symmetry of the body of moment

M®=—Je. (17.9)

In applying Egs. (17.6) and (17.8) to problem solutions, the
magnitudes of the respective quantities are computed and the directions are
shown in a diagram.
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