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LECTURE 1 
INTRODUCTION TO STATICS. 

EQUILIBRIUM OF A SYSTEM OF CONCURRENT FORCE  
 
The science which treats of the general laws of motion and equilibrium 

of material bodies and of the resulting mutual interactions is called 
theoretical, or general, mechanics. Theoretical mechanics constitutes one 
of the scientific bedrocks of modern engineering.  

By motion in mechanics we mean mechanical motion, i.e., any change 
in the relative positions of material bodies in space which occurs in the 
course of time. By mechanical interaction between bodies is meant such 
reciprocal action which changes or tends to change the state of motion or 
the shape of the bodies involved (deformation). The physical measure of 
such mechanical interaction is called force.  

Theoretical mechanics is primarily concerned with the general laws of 
motion and equilibrium of material bodies under the action of the forces to 
which they are subjected.  

According to the nature of the problems treated, mechanics is divided 
into statics, kinematics and dynamics. Statics studies the forces and the 
conditions of equilibrium of material bodies subjected to the action of 
forces. Kinematics deals with the general geometrical properties of the 
motion of bodies. Finally, dynamics studies the laws of motion of material 
bodies under the action of forces.  

 
1. The subject of statics  

 
Statics is the branch of mechanics which studies the laws of 

composition of forces and the conditions of equilibrium of material bodies 
under the action of forces.  

The state of equilibrium or motion of a given body depends on its 
mechanical interactions with other bodies, i.e., on the loads, attractions or 
repulsions it experience as a result of such interactions. In mechanics, the 
quantitative measure of the mechanical interaction of material bodies is 
called force.  

Force is a vector quantity. Its action on a body is 
characterized by its (1) magnitude, (2) direction, and 
(3) point of application. 

The line DE along which the force is directed is 
called the line of action of the force (see Fig. 1.1). Fig. 1.1 

We shall call any set of forces acting on a rigid 
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body a force system. We shall also use the following definitions:  
1. A body not connected with other bodies and which from any given 

position can be displaced in any direction in space is called a free body. 
2. If a force system acting on a free rigid body can be replaced by 

another force system without disturbing the body’s initial condition of rest 
or motion, the two systems are said to be equivalent.  

3. If a free rigid body can remain at rest under the action of a force 
system, that system is said to be balanced or equivalent to zero. 

4. If a given force system is equivalent to a single force, that force is 
the resultant of the system. Thus, a resultant is a single force capable of 
replacing the action of a system of forces of on a rigid body. 

A force equal in magnitude, collinear with, and opposite in direction to 
the resultant is called an equilibrant force. 

5. Forces acting on rigid body can be divided into two groups: the 
external forces and the internal forces. External forces represent the action 
of other material bodies on the particles of a given body. Internal forces are 
those with which the particles of a given body act on each other. 

6. A force applied to one point of body is called a concentrated force. 
Forces acting on the points of a given volume or given area of a body are 
called distributed forces. 

 
2. Fundamental principles 

 
1st Principle. A free rigid body subjected to the action of two forces 

can be equilibrium if, and only if, the two forces are 
equal in magnitude (F1=F2), collinear, and opposite 
in direction. (Fig. 1.2) 

2nd Principle. The action of a given force 
system on a rigid body remains unchanged if 
another balanced force system is added to, or 
subtracted from, the original system. 

Corollary of the 1st and 2nd Principles. The 
point of application of a force acting on a rigid body 
can be transferred to any other point on the line of action of the force 
without altering its effect.  

Fig. 1.2 

Thus, the vector denoting force F can be regarded as applied at any 
point along the line of action (such a vector is called a sliding vector). 

3rd Principle (the Parallelogram Law). Two forces applied at one 
point of a body have as their resultant a force applied at the same point and 

 3



represented by the diagonal of parallelogram constructed with the two 
given forces as its sides.  

4th Principle. To any action of one material 
body on another there is always an equal and 
oppositely directed reaction. (Fig. 1.3) 

5th Principle. (Principle of Solidification). 
If a freely deformable body subjected to the action 
of a force system is in equilibrium, the state of 
equilibrium will not be disturbed if the body solidities (becomes rigid). 

Fig. 1.3 

 
3. Constraints and their reactions 

 
As has been defined above, a body not connected with other bodies 

and capable of displacement in any direction is called a free body (e.g., a 
balloon floating air). A body whose displacement in space is restricted by 
other bodies, either connected to or in contact with it, is called a 
constrained body. We shall call a constraint anything that restricts the 
displacement of a given body in space. 

A body acted upon by a force or forces whose displacement is 
restricted by a constraint acts on that constraint with a force which is 
customarily called the load or pressure acting on the constraint. At the same 
time, according to the 4th principle, the constraint reacts with a force of 
same magnitude and opposite sense. The force with which a constraint acts 
on a body, thereby restricting its displacement, is called the force of 
reaction of the constraint (force of constraint) or simply the reaction of the 
constraint. 

Some common types of constraints: 

 
1. Smooth plane (surface) or support 

  
2. String 3. Pin-type rod 
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4. Fixed pin 5. Pin or roller support 

  
6. Fixed support (rigid clamp or 7. Cylindrical pin embedding) 

 
 

8. Ball-and-socket joint 9. Step bearing 

 
4. Equilibrium of a system of concurrent force 

For a system of concurrent forces acting on a body to be in equilibrium 
it is 

uilibrium. Since the resultant R of a 
syste

in equilibrium it in 
nece

lytical Conditions of Equilibrium. Analytically the resultant of a 
system of concurrent forces is determined by the formula 

 

necessary and sufficient for the resultant of the forces to be zero. The 
conditions which the forces themselves must satisfy can be expressed either 
in graphical or in analytical form. 

Graphical Condition of Eq
m of concurrent forces is defined as the closing side of a force 

polygon constructed with the given forces, it follows that R can be zero 
only if the terminal point of the last force of the polygon coincides with the 
initial point of the first force. i.e., if polygon is closed. 

Thus, for a system of concurrent forces to be 
ssary and sufficient for the force polygon drawn with these forces to be 

closed. 
Ana
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2 2 2
x y zR R R R= + +  (1.1) 

As the expression under the radical is a sum of positi
can be zero only if sim
actin

This equation express the condition
The necessary and sufficient condition for the equilibrium of a three-
dime

Eng. (2) and (3) also e
equilibrium of a free rigid body subjected to the action of concurrent 
forc

FO  

Consider a forc
a point A of a rigid body (Fig. 2.1) 
whic

ve components, R 
ultaneously Rx=0, Ry=0, Rz=0, i.e., when the forces 

g on the body satisfy the equations 

0, 0, 0kx ky kz
k k k

F F F= = =∑ ∑ ∑ . (1.2) 

s of equilibrium in analytical form: 

nsional system of concurrent forces is that the sums of the projections 
of all the forces on each of three coordinate axes must separately vanish. 

If all the concurrent forces acting on a body lie in one plane, they form 
a coplanar system of concurrent forces. Obviously, for such a force system 
only two equations are required to express the conditions of equilibrium: 

0, 0kx ky
k k

F F= =∑ ∑ . (1.3) 

xpress the necessary conditions (or equations) of 

es. 
The Theorem of Three Forces. The following theorem will often be 

found useful in solving problems of statics: If a free rigid body remains in 
equilibrium under the action of three nonparallel coplanar forces, the lines 
of action of those forces intersect at one point.  
 

LECTURE 2 
CONDITIONS FOR THE EQUILIBRIUM OF A COPLANAR 

RCE SYSTEM
1. Moment of force about a point 

 
e F applied at 

h tends to rotate the body 
about a point O. The 
perpendicular distance h from O 
to the line of action of F is called 
the moment arm of force F about 
the centre O. 

The moment of a force F 
Fig. 2.1 
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about a centre O is defined as the product of the force magnitude and the 
leng

us, 

We shall call 
body countercloc
cloc

int of application 
of th

s 
zero

ultant of a coplanar system of concurrent forces about any centre is 
equa

2. A Force Couple. Moment of a Couple 

A force cou
of same magnitude and opposite sense acting on a 
rigid body (Fig. 2.2). Thus, a couple cannot be 

is called the plane of action of the 
coup

couple. A couple is 

e moment of a couple is defined as a quantity 
equa

th of the moment arm taken with appropriate sign. 
We shall denote the moment of a force F about a centre O by the 

symbol m0(F) . Th
( )Om Fh= ±F . (2.1) 

a moment positive if the applied force tends to rotate the 
kwise, and negative if it tends to rotate the body 

kwise. Thus, the sign of the moment of the force F about O is (+) in 
Fig. 2.1a, and (–) in Fig. 2.1b. If the arm is measured in metres, the 
moment of the force is measured in newton-metres (Nm). 

Note the following properties of the moment of the force: 
(1) The moment of a force does not change if the po
e force is transferred along its line of action. 
(2) The moment of force about a centre O can be zero only if the force 

is zero or if its line of action passes through O (i.e., the moment arm i
). 
Varignon′s Theorem of the Moment of a Resultant. The moment of 

the res
l to the algebraic sum of the moments of the component forces about 

that centre. 
 

 
ple is a system of two parallel forces 

replaced or balanced by a single force. For this reason 
the properties of the couple as a special mode of 
mechanical interaction between bodies are the subject 
of a special study. 

The plane through the lines of action of both 
forces of a couple 

le. The perpendicular distance d between the 
lines of action of the forces is called the arm of the 
characterized by its moment. 

For this case the following definition can be given in analogy with that 
of the moment of a force: Th

Fig. 2.2 

l to the product of the magnitude of one of the forces of the couple and 
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the perpendicular distance between the forces, taken with the appropriate 
sign. Denoting the moment of a couple by the symbol m or M, have: 

( )Om Fd= ±F . (2.2) 

The moment o
actio

prove the following theorem of the moments of the forces of a 
coup

essary for two couples to be 
equi

3. Theorem of translation of a force 

A force acting on a rigid body can be moved parallel to its line of 
actio

appl

 F and applied at B, and a couple (F//,–F) of 

F . (2.3) 

Corollary 
copl

Fig. 2.3 

f a couple (as that of a force) is said to be positive if the 
n of the couple tends to turn a body counterclockwise, and negative if 

clockwise. 
Let us 
le: The algebraic sum of the moments of the forces of a couple about 

any point in its plane of action is independent of the location of that point 
and is equal to the moment of the couple. 

Before stating the conditions nec
valent let us prove the following theorem: A couple acting on a rigid 

body can be replaced by any other couple of the same moment lying in the 
same plane without altering the external effect on that body. 

 

 

n to any point of the body, if we add a couple of a moment equal to the 
moment of the force about the point to which it is translated. 

Consider a force F 
ied to a rigid body at a 

point A (Fig. 2.3). The action 
of the force will not change 
if two balanced forces F/=F 
and F//=–F are applied at any 
point B of the body. The 
resulting three-force system 
consists of a force F/, equal to
moment  

m m= ( )B

of the theorem of translation of a force. Any system of 
anar forces acting on a rigid body can be reduced to an arbitrary 

centre O in such a way that it is replaced by a single force R equal to the 
principal vector of the system and applied at the centre of reduction O and 
a single couple of moment MO equal to the principal moment of the system 
about O. 
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4. Conditions for the equilibrium of a coplanar force system 
 

or any given coplanar force system to be in equilibrium it is 
nece

= , (2.4) 

where O is any point O

librium. The magnitudes of R and MO are 

F
ssary and sufficient for the following two conditions to be satisfied 

simultaneously: 
0, M=R 0O

 in a given plane, as at R=0 the magnitude of M  does 
not depend on the location of O. 
1. The Basic Equations of Equi
determined by the equations 

2 2 ,    ( )x y O O km F , (2.5) 

where  

R R R M= + =∑

x kx
k

F=∑  and yy k
k

R F=∑R  (2.6) 

But R can be zero only if both Rx=0 and Ry=0. Hence, Eqs. (2.5) will be 

F m =∑ ∑ F . (2.7) 

Eqs. (2.7) express the following analytical conditions of equilibrium: The 

quilibrium: The necessary 

. (2.8) 

3. The Third Form of the Equations of Equilibrium (the Equations of 

separately vanish: 

satisfied if 

F = =∑ 0,    0,    ( ) 0kx ky O k
k k k

necessary and sufficient conditions for the equilibrium of any coplanar 
force system are that the sums of the projections of all the forces on each of 
the two coordinate axes and the sum of the moments of all the forces about 
any point in the plane must separately vanish. 
2. The Second Form of the Equations of E
and sufficient conditions for the equilibrium of any coplanar force system 
are that the sums of the moments of all the forces about any two points A 
and B and the sum of the projections of all the forces on any axis Ox not 
perpendicular to AB must separately vanish: 

0,    ( ) 0,    ( )F m m= = =∑ ∑ ∑F F 0kx A k B k
k k k

Three Moments): The necessary and sufficient conditions for the 
equilibrium of any coplanar force system are that the sums of the moments 
of all the forces about any three non-collinear points A, B, C must 
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( ) 0,    ( ) 0, ( ) 0A k B k C k
k

m m m= = =∑ ∑ ∑F F F . (2.9) 
k k

 
5. Equilibrium of a coplanar system of parallel force  

 
If all can take 

axis 
axis 

where the y axis is parallel to the 
Another form of the conditions for the equilibrium 

is: 

(2.11) 

The points A and B should not lie
forces. 

LECTURE 3 
EQUILIBRIUM OF SYSTEMS OF BODIES 

1. Distributed forces 
 

In engine s distributed 
ver an area according to a aw. Let us examine some 

p

of a

f stat a force 
e 

. (3.1) 

 the forces acting on a body are parallel (Fig. 2.4), we 
 perpendicular to them and x of a coordinate system

y parallel to them. Then the x projections of all the 
forces will be zero, and the first one of Eqs. (2.8) 
becomes an identity 0 = 0. Hence, for parallel forces 
we have two equations of equilibrium: 

0,    ( ) 0ky O k
k k

F m= =∑ ∑ F , (2.10) 

forces. Fig. 2.4 

of parallel forces derived from Eqs. (2.9) 

( ) 0,    ( ) 0A k B k
k k

m m= =∑ ∑F F . 

 on a straight line parallel to the given 

 

ering proble eal with loadms we often have to d
 known mathematical lo

sim le cases of distributed coplanar forces. 
A plane system of distributed forces is 

characterized by the load per unit length of the line 
pplication, which is called the intensity q. The 

dimension of intensity is newtons per metre (N/m). 
(1) Forces Uniformly Distributed Along a 

Straight Line (Fig. 3.1). The intensity q of such a 
syste

Fig. 3.1 

m is a constant quantity. In solving problems o
system can be replaced by its resultant Q of magnitud

ics such 

Q aq=
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applied at the middle of AB. 
(2) Forces Distributed Along a Straight Line According to a 

Linear Law
the pressure of water against a dam, which drops 

ottom to zero at the 
surfa

 (Fig. 3.2). An example of such a load is 

from a maximum at the b
ce. For such forces the intensity q varies from 

zero to qm. The resultant Q is determined in the same 
manner as the resultant of the gravity forces acting 
on a homogeneous triangular lamina ABC. As the 
weight of a homogeneous lamina is proportional to 
its area, the magnitude of Q is 

1
2 mQ aq= . 

and is applied at a point at a dis

(3.2) 

tance of a/3 from side BC of triangle ABC. 
 

2. Problem
 

 
onsidered, the reactions of the constraints are unknown quantities. Their 

num  of 
tatics can be solved only if the number of unknown reactions is not greater 

than

ion of engineering structures is reduced to 
an investigation of the conditions for the equilibrium of systems of 
connected bodies. ng the parts of a 
iven structure internal, as opposed to external constraints which connect a 

give

Fig. 3.2 

s statically determinate and statically indeterminate 

In problems where the equilibrium of constrained rigid bodies is
c

ber depends on the number and type of the constraints. A problem
s

 number of equilibrium equations in which they are present. Such 
problem are called statically determinate, and the corresponding systems of 
bodies are called statically determinate systems. 

Problems in which the number of unknown reactions of the constraints 
is greater than number of equilibrium equations in which they are called 
statically indeterminate, and the corresponding systems of bodies are called 
statically indeterminate systems. 

 
3. Equilibrium of systems of bodies  

 
In many cases the static solut

We shall call the constraints connecti
g

n structure with other bodies (e. g., the supports of a bridge). 
If a structure remains rigid after the external constraints (supports) are 

removed, the problems of statics are solved for it as for a rigid body. 
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However, an engineering structure may not 
necessarily remain rigid when the external 
cons

supp

of equilibrium for a rigid 
onditions, while necessary, 

were nown qu ould be 
roblem it is necessary to 

of the arch we obtain three more equations with two more 
unkn

 bodies, each 
of w

static friction 

We know from experienc  bodies tend to slide on each 
other, a resisting force appears ace of contact which opposes 
their relative motion. Thi tion. 

ily to minute irregularities on the contacting 
surfaces, which resist their relative motion, and to forces of adhesion 
between contacting surfaces. A detailed examination of the nature of 

Fig. 3.3 

traints are removed. An example of such a 
structure is the three-pin arch in Fig. 3.3. If 

orts A and B are removed the arch is no 
longer rigid, for its parts can turn about pin C. 

According to the principle of solidification, 
for a system of forces acting on such a structure 
to be in equilibrium it must satisfy the conditions 
body. It was pointed out, though, that these c

 not sufficient, and therefore not all the unk
determined from them. In order to solve such a p
examine additionally the equilibrium of one or several parts on the given 
structure. 

For example, for the forces acting on the three-pin arch in Fig. 68 we 
have three equations with four unknown quantities, XA, YA, XB, YB. By 
investigating the conditions for the equilibrium of the left- or right-hand 
members 

antities c

own quantities, XC and YC (not shown in Fig. 3.3). Solving the system 
of six equations we can determine all six unknown quantities. 

Another method of solving such problems is to divide a structure into 
separate bodies and write the equilibrium equations for each as for a free 
body. The reactions of the internal constraints will constitute pairs of forces 
equal in magnitude and opposite in sense. For a structure of n

hich is subjected to the action of a coplanar force system, we thus have 
3n equations from which we may determine 3n unknown quantities (in 
other force systems the number of equations is, of course, different). If the 
number of unknown quantities is greater than the number of equations, the 
problem is statically indeterminate. 

 
LECTURE 4 
FRICTION 

1. Laws of 
 

e that when two
 at their surf

s force is called sliding fric
Friction is due primar
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frict

ral laws deduced 
from

e of contact, the magnitude of which can have any 
valu

0

broad limits, the value of limiting friction does not 
depend on the
Take

For more
engi

 friction of rest. When motion occurs, 
the f  the motion and equals the product 
of th ion and the normal pressure: 

rimentally. The value of f depends not only on the 

ion is a complex physic-mechanical problem lying beyond the scope of 
theoretical mechanics. 

Engineering calculations are based on several gene
 experimental evidence, which reflect the principal features of friction 

with an accuracy sufficient for practical purposes. These laws, the laws of 
sliding friction, can be formulated as follows: 

(1) When two bodies tend to slide on each other, a frictional force is 
developed at the surfac

e from zero to a maximum value Fl which is called limiting friction, or 
friction of impending motion. 

Frictional force is opposite in direction to the force which tends to 
move a body. 

(2) Limiting friction is equal in magnitude to the product of the 
coefficient of static friction (or friction of rest) f0 and the normal pressure 
or normal reaction N: 

F f N= . 0l (4.1) 
The coefficient of static friction f  is a dimensionless quantity which is 

determined experimentally and depends on the material of the contacting 
bodies and the conditions of the surfaces (their finish, temperature, 
humidity, lubrication, etc.). 

(3) Within fairly 
 area of the surface of contact. 

n together, the first and second laws state that for conditions of 
equilibrium the static friction (adhesive force) F ≤ Fl or 

0F f N≤ . (4.2) 
The following table offers an idea of the values of the coefficient of 

static friction for various materials: 
Wood on wood………….0.4 to 0.7 
Metal on metal………….0.15 to 0.25 
Steel on ice……………..0.027 

 detailed information the student is invited to consult 
neering hand books. 
The foregoing refers to sliding
rictional force is directed opposite to
e coefficient of kinetic, or sliding, frict
F fN= . (4.3) 

The coefficient of kinetic friction f is also a dimensionless quantity 
which is determined expe
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mate

 

icular 
to it Con
angle with
incre

rial and conditions of the contacting surfaces but also, to some degree, 
on the relative velocity of the bodies. In most cases the value of f at first 
decreases with velocity and then attains a practically constant value. 

2. Reactions of Rough Constraints. Angle of Friction 
 
Up till now, in solving problems of statics, we neglected friction and 

regarded the surfaces of constraints as smooth and their reactions as normal 
to the surface. The reactions of real (rough) constraints consist of two 
com onents: the normal reaction N and the frictional force F perpendp

. sequently, the total reaction R forms an 
 the normal to the surface. As the friction  

ases from zero to Fl force R changes from N to 
Rl its angle with the normal increasing from zero to 
a maximum value φ0 (Fig. 4.1). The maximum angle 
φ0 which the total reaction of a rough support makes 
with the normal to the surface is called the angle of 
static friction, or angle of repose. 

From the diagram we have: 

0tg φ lF
N

= . 

Since Fl=f0N, we have the following relation b
friction and the coefficient of friction: 

(4.4) 

etween the angle of 

0 0tg φ f=

Fig. 4.1 

. 
stem is in equilibrium the total reaction 

(4.5)
When a sy

R can pass an
depending on the
impe

If to a body l
forc

t of the body and 
 α, where f0=tg φ0, 
, if angle α is less 

t the applied force. 
d sel . 

 

ywhere within the angle of friction, 
 applied forces. When motion 

nds, the angle between the reaction and the 
normal is φ0. 

ying on a rough surface is applied a 
e P making an angle α with the normal (Fig. 4.2), 

the body will move only if the shearing force P 
sinα is greater than Fl=f0Pcos α (neglecting the weigh
considering N=Pcos α). But the inequality Psin α>f0Pcos
is satisfied only if tg α>tg φ0, i.e., if α>φ0. Consequently
than

Fig. 4.2 

 φ0 the body will remain at rest no matter how grea
This explains the well-known phenomena of wedging an

 
f-locking
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um 
value Fl. For the analytical solution of problems the reaction of a rough 
constraint is denoted b l, where Fl=f0N. The 
known equations of static equilibrium are then written, substituting f0N for 
Fl, a

 is not equal to Fl and its magnitude, 
if it 

ition of impending 
moti

weight P resting on a rough horizontal 
surface (Fig. 4.2a)
of the roller a force Q<Fl, there will be 
deve

, which prevents the 
rolle

h turns the roller. If these 
the roller to move, howsoever 

 is not th for, due to 
n surface А .3b). When 
 at В increases. As a result, the 

Fig. 4.3 

3. Equilibrium with friction 
 
Examination of the conditions for the equilibrium of a body taking 

friction into account is usually limited to a consideration of the conditions 
when motion is impending and the frictional force acquires its maxim

y its two components N and F

nd solved for the required values. 
If the problem requires that all possible positions of equilibrium be 

determined, it is sufficient to solve only for the position of impending 
motion. Other positions of equilibrium can then be found by reducing the 
coefficient of friction f0 in the obtained solution to zero. 

It is important to note that in positions of equilibrium when motion 
does not impend the force of friction F

is required, should be determined from the conditions of equilibrium as 
a new unknown quantity. 

In graphical solutions it is more convenient to denote the reaction of a 
rough constraint by a single force R, which in the pos

on will be inclined at an angle φ0 to the normal to the surface. 
 

5. Rolling friction and pivot friction 
 
Rolling friction is defined as the resistance offered by a surface to a 

body rolling on it. 
Consider a roller of radius R and 

. If we apply to the axle 

loped at A a frictional force F, equal 
in magnitude to Q

r from slipping on the surface. If the 
normal reaction N is also assumed to be 
applied at A, it will balance force P, with 
forces Q and F making a couple whic
assumptions were correct, we could expect 
small the force Q. 

Experience tells us however, that this
deformation, the bodies contact over a certai
force Q acts, the pressure at A decreases and

e case; 
В (Fig. 4



reaction N is shifted in the direction of the action of force Q. As Q 
increases, this displacement grows till it reaches a certain limit k. Thus, in 
the position of impending motion, acting on the roller will be a couple 
(Ql,F) with a moment QlR balanced by a couple (N,P) of moment Nk. As 
the moments are equal, we have QlR=Nk, or 

l
kQ N
R

= . (4.6) 

As long as Q<Ql the roller remains at rest; when Q>Ql it starts to roll. 
The linear quantity k in Eq. (4.6) is called the coefficient of rolling 

friction, or resistance, and is generally measured in metres. The value of k 
depends on the material of the bodies and is determined experimentally. 
The following 

Wood on w

EQ TEM IN SPACE 

problems of statics for force systems in space, 
we should elaborate some of the concepts 
i
begin with th

Thus, the moment of a force F about 
cent

t to an axis 

oblems of statics for any 
ncept of  of a force 

about an axis. 

list offers an idea of some typical values of k: 
ood………………………… 0.05 to 0.08 cm 

Mild steel on steel (wheel on rail)……... 005 cm 
Hardened steel on steel (ball bearing)..... 0.001 cm 
The ratio k/R for most materials is much less than the coefficient of 

static friction f0. That is why in mechanisms rolling parts (wheels, rollers, 
ball bearings, etc.) are preferred to sliding parts. 

 
LECTURE 5 

UILIBRIUM OF AN ARBITRARY FORCE SYS
1. Moment of a force about a point as a vector 

 
Before proceeding with the solution of 

ntroduced in the preceding lectures. Let us 
e concept of moment of a force. 

er O is equal to the cross product of the 
radius vector r=OA, from O to the point of 
application A of the force, and the force itself. 

O = × = ×M OA F r F , (5.1) 
 

Fig. 5.1 

2. Moment of a force with respec
 

Before proceeding with the solution of pr
force system in space we must introduce the co  moment
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The moment of a force about an axis is the measure of the tendency of 
the force to p
xis. Consider a rigid body free to rotate 

abou

lane xy through point A 
norm

 parallel to axis z, cannot turn 
nslate the body along it). Thus 
 rotate the body is the same as 
, that 

roduce rotation about that 
a

t an axis z (Fig. 5.2). Let a force F 
applied at A be acting on the body. Let us 
now pass a p

al to the axis z and let us resolve the 
force F into rectangular components Fz 
parallel to the z-axis and Fxy in the plane 
xy (Fxy is in fact the projection of force F 
on the plane xy). Obviously, force Fz, being
the body about that axis (it only tends to tra
we find that the total tendency of force F to
that of its component Fxy. We conclude, then

( ) ( )z z xym m=F F , 
where mz(F) denotes the moment of force F with respect to axis z. But the 
rotational effect of force Fxy, which lies in a plane perpendicular to axis z, is 
the product of the magnitude of this force and its distance h from the axis. 
The moment of force Fxy with respect to point O, where the axis pierces the 
plane xy, is the same. Hence,  

Fig. 5.2 

(5.2) 

( ) ( )z xy O xym m=F F , (5.3) 
or, by Eq. (5.2), 

( ) ( )z O xy xym m h= = ±F F F , (5.4) 
From this we deduce the following definition: The moment of a force 

about an axis is an algebraic quantity equal to the moment of the 
projection of that forc

ion of the axis and the plane. 
oments the following 

mind: 

 to an axis is zero if the force and the axis are coplanar. 

oduct of the force magnitude and the perpendicular distance 
from the force to the axis. 

e on a plane normal to the axis with respect to the 
point of intersect

In determining m special cases should be borne in 

(1) If a force is parallel to an axis, its moment about that axis is zero 
(since Fxy=0). 

(2) If the line of action of a force intersects with the axis, its moment 
with respect to that axis is zero (since h=0). 

Combining the two cases, we conclude that the moment of a force with 
respect

(3) If a force is perpendicular to an axis, its moment about that axis is 
equal to the pr
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Varignon's Theorem: if a given force system has a resultant, the 
moment of that resultant with respect to any axis is equal to the algebraic 
sum

the 
follo

an arbitrary centre О and 
replaced
qual to the principal vector 

of th
an

f the system with respect to О (Fig. 5.3). 

)k , (5.5) 

 of an arbitrary force system in space 

e 

moment MO, [the values of R an
Reasoning we come to the conclusion that the necessary and sufficient 
conditions for the given system of forces to be in equilibrium are that R=0 
and s 
n the coordinate axes are zero, i.e., when Rx=Ry=Rz=0 and Mx=My=Mz=0, 

or w

s of the moments of all the 
forces about those axes must separately vanish. 
 

 of the moments of the component forces with respect to the same axis 
 

3. Reduction of a force system in space to a given centre  
 

We have thus proved 
wing theorem: Any 

system of forces acting on a 
rigid body can be reduced to 

 by a single force R, 
e

e system applied at the 
centre of reduction, d a 
couple with a moment MO, 
equal to the principal moment o

, (k O O
k k

= =∑ ∑R F M m F

 
4. Conditions of equilibrium

 
Like a coplanar force system, any force system in space can b

reduced to a point О and replaced by a resultant force R and couple of 

Fig. 5.3 

d MO, are determined from Eqs. (5.5)]. 

 MO=0. But vectors R and MO, can be zero only if all their projection
o

hen the acting forces satisfy the conditions 

0, 0, 0,

( ) 0, ( ) 0, ( ) 0.

kx ky kz
k k k

x k y k z k
k k k

F F F

m m m

= = =

= = =

∑ ∑ ∑
∑ ∑ ∑F F F

 (5.6) 

Thus, the necessary and sufficient conditions for the equilibrium of any 
force system in space are that the sums of the projections of all the forces 
on each of the three coordinate axes and the sum

 18
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5. The case of parallel forces  
 

If all the forces acting on a body are parallel, 
the coordinate axes can be chosen so that the axis z 
is pa

of 
quilibrium: 

kz x k y kF m= =∑ ∑  (5.7) 

. 
r the equilibrium of a 
 the projections of all 
s and, the sums of the 
oordinate axes must 

ish. 
 

LECTURE 6 
KINEMATICS OF A PARTICLE 

ough mechanical motion we understand the changing 
the position of bodies (or parts from bodies) with respect to other bodies 
considered as reference system

In the kinemat  two problems: to 
determine the position

otion, and to know how moves the particle (or the body).  
 

or 
. 

 
2. Method of describing motion of a particle 

rallel to the forces (Fig. 5.4). Then the x and у 
projections of all the forces will be zero, their 
moments about axis z will be zero, and the Eqs. 
(5.6) will be reduced to three conditions 
e

( ) 0, ( ) 0m =∑F F
Fig. 5.4 

0,
k k k

The other equations will turn into identities 0 = 0
Thus, the necessary and sufficient conditions fo

system of parallel forces in space are that the sum of
the forces on the coordinate axis parallel to the force
moments of all the forces about the other two c
separately van

1. Introduction to kinematics 
 

Kinematics is that part of the theoretical mechanics that deals with the 
study of the mechanical motion without to consider the forces and the 
masses of the bodies in motion, namely studies the geometry of the motion. 
We remind that thr

s. 
ics we shall have to solve generally

 of the particle (or of the body) in each instant of the 
m

For to define the position of the particle we can use the vector method
of describing motion (used in theoretical demonstrations generally), 
coordinate method of describing motion and natural method of describing 
motion. 

For to define how the motion is made we shall introduced two vect
notions: velocity and acceleration



 

abso

n in time) the position vector is a 
func

(6.1) 

This func ill meet the 
llowing conditions: it is continuous (the particle cannot make 

insta rticle cannot have more 

ition of the particle in scalar way 
we m, for 

), the 
rticle may be expressed using three 

coordinates 
coordinates 
cond

Vector method of describing motion. In 
the first case is used the radius vector r, that in 

lute motion is represented with respect to a 
fixed point (Fig. 6.1). 

Because the particle is in motion (changes 
its potio

tion of time:  
( )t=r r  

Fig. 6.1 

tion of time, for represents a real motion w
fo

ntaneous jumps), it is uniformly (the pa
positions simultaneously) and it is derivable. 

Coordinate method of describing motion. If we 
want to express the pos

know that, with respect to a reference syste
example the Cartesian reference system (Fig. 6.2
position of the pa

(three scalar position parameters). These 
are functions of time also having the same 

itions as the position vector: 
( ), ( ), ( )x x t y y t z z t= = = . (6.2) 

It is obviously that between the vector an

Fig. 6.2 

d the scalar expression of the 
potion we have the relation: 

( ) ( ) ( ) ( )t x t y t z t= + +r k j k . 

Natural method of describing motion. The positi
can be expressed in another way also: we define the 
curved line (C) on which moves the particle and 
defines the position of the particle using the distance 
on this line with respect to a give

(6.3) 

on of the particle 

n position from the 
line (Fig. 6.3). The curved line on
moves is called trajectory or path
is th

g that all positions from 
the trajectory can be defined usi
defined also as the locus of the p

 which the particle 
 and by definition it 

e locus of the successively occupied positions of 
the particle in motion. Notin

Fig. 6.3 

ng the position vector the trajectory may be 
osition vector’s peaks. 
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If the parameter time has a given value, the position vector or the 
coordinates of the particle will be defined an instantan
particle (at a given instant). One of the important instan
the particle in the study of the motion is the initial posit

 
3. Velocity and acceleration 

 
Let be a particle P in motion on an any trajectory

the motion the position of the particle will be defined by
r(t). At another instant t1: 

t t t= + Δ

eous position of the 
taneous position of 

ion. 

. A nt t of 
 the position vector 

where Δr is the 
variation of the positio
ector in the Δt interval 

of ti

quantity defined by 
therelation: 

t the insta

1  

the position of the particle will be defined by the position vector: 

1 1( ) ( )t t t= = + Δ = + Δr r r r r  

n 
v

me (Fig. 6.4). 
We shall consider 

the following vector 

t
Δr

=
Δ

υ  

erage velocity. But we see that this vector does 
an in particular cases) the kinds of motion. This 
onsider a circular motion and the interval of time 

e necessary to perform an entire circumference then the 
average velocity results equal to zero that is not true. Consequently this rate 

e position vector and the corresponding interval 
otion only if the interval of time is very small 

o). In this case we shall obtain the next vector: 

Fig. 6.4 

This vector is called av
not correctly describe (th
rate, for example, if we c
is equal to the tim

between the variation of th
of time is a feature of the m
(tends to zer

0 0
lim lim

t t

d
t dtΔ → Δ →

Δ
= = =

Δ
r rυ υ . (6.4) 

This vector is called instantaneous velocity (at a given instant) and by 
definition is: the first derivative with respect to time of the position vector. 
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For to simplify we shall mark the first derivative with respect to time 
with a point above the derivate vector: 

•

=υ r . 
For to simplify the names in the problems we shall call the 

instantaneous velocity simply velocity
instantaneous velocity but for t

Consider now the particle in th  
two 

 
intro

 the two instants in a convenient 
point. The variation of the velocity (as vector) 
in the interval of time is marked: 

. We shall use also the name 
he velocity at a given instant of the motion. 

e two positions corresponding to the
instants: t and t1. Because the velocities in these two positions are 

different, it is necessary, for to know the kind of motion of the particle to
duce a new notion that defines the variation of the velocity (Fig. 6.5). 

We shall bring the two velocities from

t
Δ

=
Δ

a υ  

that is called average acceleration. Because 
this vector does not describe well enough the 
kind of motion we shall define another notion 
decreasing the interval of time, finally 
obtaining the instantaneous acceleration: 

Fig. 6.5 

2

0 0
lim lim

t t

d d
2t dt dt

• ••

Δ → Δ →

Δ
= = = =

Δ
a a υ υ r

= =υ r . (6.5) 

Consequently the instantaneous acceleration is the first derivative , 
with respect to time, of the velocity of the particle or the second derivative, 

article. 
respect

eleration of a particle when its 
motion is described by the coordinate method 

 
As we have seen in the previous sections the absolute motion of a 

parti

with respect to time, of the position vector of the p
As we can see the second derivative with 

with two points above the corresponding vector. 
 

4. Determination of the velocity and acc

 to time is marked 

cle can be studied using different reference systems. The simplest 
reference system is the Cartesian system of reference considered as a fixed 
system. 

 22



Consider a particle in motion (absolute motion) and a fixed Cartesian 
system of reference Oxyz. 

The main property of this system can be expressed in the following 
way: 

0d d dk
dt dt dt
The position of the particle may be defined in scalar way using the 

three coordinates: 

= = =
i j . 

x ( ), ( ), ( )x t y y t z z t= = , 

that are functions of time

=

 because the particle is in motion (change its 
posi

hese coordinates are called the laws of motion in Cartesian 
coordinates or parametric equations of the motion in Cartesian 
coordinates. 

The position of the particle can be expressed also using the position 
vect

Between this vector and the Cartesian coordinates we may write the 

tion) with respect to the fixed reference system. 
T

or with respect to the origin of the reference system: 
( )t=r r . 

well-known relation: 
( ) ( ) ( ) ( )t x t y t z t= + +r k j k . 

By eliminating time t from the equations of motion we can obtain the 
equation of the path in the usual form, i.e., in the form of a relation between 
the p

he velocity of the 
particle. Using the definition of the instantaneous velocity we find: 

article’s coordinates. 
For to know the kind of motion we shall express t

( ) dx dy dzt
dt dt dt

= + +υ i j k . 

This means that the projections of the velocity on the axes of the 
reference system are: 

( ) , ( ) , ( )x y z
dx dy dzt t t
dt dt dt

υ = υ = υ = , 

from which we obtain, using the well-known relations, the magnitude and 
the direction of the velocity in Cartesian coordinates: 
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2 2 2 , cos , cos , cosyx z
x y z υ υ υ

υυ υ
υ = υ + υ + υ α = β = γ =

υ υ υ
, 

he projections of the velocity on the fixed axes are 
equal to the first derivatives, with respect to time, of the corresponding 
coordinates. 

 is the acceleration. 
From definition we have: 

2 2 2cos cos cos 1υ υ υα + β + γ = . 

We remark that t

Also we remark that in this reference system we have not any 
properties of the velocity resulted from the relations. 

The second vector defining the kind of motion

d
dt

=a υ  

or removing function the Cartesian coordinates we obtain finally: 
2 2 2

( ) d x d y d zt =a 2 2 2dt dt dt
namely we have the following projections on the 

+ +i j k . 

axes, magnitude and 
direction in Cartesian coordinates: 

2d x 2 2

2 2 2( ) , ( ) , ( )x y z
d y d za t a t a t
dt dt

= = = , 
dt

2 2 2 , cos , cos , cosyx z
x y z a a aa a a a

a a a
= + + α = β = γ = . 

aa a

 
5. Determination of the velocity and acceleration of a particle when its 

This reference system, called natural system also, is used only the 
cases when is known the trajectory of the particle. 

Consider a particle P in motion on a known trajectory (C). 
We shall consider the following reference system: 
- The origin of the system is taken in the point representing the 

particle; 

po

motion is described by the natural method. Tangential and normal 
accelerations of a particle 

 

- The axis Pτ, called tangent axis, will be tangent to the trajectory in 
int P and with the positive sense in the sense of motion; 
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- The axis Pn, called normal axis, will have 
the 

center of 
curv

s Pb, called binormal axis, is 
perp  sense is considered 
so th

use the particle is located in the origin of this system and the 
nam

t vectors.  

direction of the principal normal to the 
trajectory in point P. The positive sense of this 
axis will be directed toward the 

ature of the trajectory; 
- The axi

Fig. 6.6 

endicular on the previous two axes and the positive
at the three axes to make a right hand system.  
Beca
es of the axes are not used to define coordinates, we shall use the 

names of these axes for the names of the corresponding uni
The position of the particle (because we know the trajectory of it) may 

be defined using one scalar quantity: 
( )s s t= , 

called curvilinear coordinate or natural coordinate and representing the 
space performed on the trajectory measured from a convenient position 
(gen

Let us see how the velocity of particle can be determined. If in a time 

erally the initial position) to the current position. Because we study the 
absolute motion of the particle, for to define the velocity and acceleration 
we need to use the position vector with respect to a fixed point O. 

For the velocity of the particle we have: 
0,n b τυ = υ = υ = ±υ , 

interval Δt = t1-t a particle moves from position M to position M1 (Fig. 6.6), 
the displacement along the arc of the path being Δs = s1-s, the numerical 
value of the average velocity will be: 

s
tΔ

Δ
υ = , 

Passing to the limit, we obtain the numerical value of the instantaneous 
velocity for a given time t: 

0 0
lim lim

t t

s ds
t dtΔ → Δ →

Δ
υ = υ = =

Δ
. (6.6) 

Thus, the numerical value of the instantaneous velocity of a particle is 
equal to the first derivative of the dispacement (of the arc coordinate) s of 
the particle with respect to time. 

The velocity vector is tangent to the path, the latter assumed to be 
known. 
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Eq. (6.6) gives the numerical (algebraic) value of velocity, i.e., a 
quantity with a sign such that the sign of v is the same as the sign of ∆s 
always ∆t > 0. As the numerical value of the velocity vector differs from its 
magnitude only in sign, we sha
v; this gives rise to practically no misunderstandings. Whenever it is 
nece

ations a of a particle lies in the osculating 
plan

= 0). 

ll denote both quantities by the same symbol 

ssary to stress that we are dealing with the magnitude of the velocity 
we shall denote it by the symbol |υ|. 

It was shown that the acceler
e, i.e., plane Mτn, hence the projection of vector a on the binormal is 

zero (ab 
Let us calculate the projections of a on the other two axes. Let the 

particle occupy a position M and have a velocity υ at any time t, and at time 
t1 = t + ∆t let it occupy a position M1 and have a velocity υ 1. Then, by 
virtue of the definition, 

1
0 0

lim lim
t tt tΔ → Δ →

Δ −
= =

Δ Δ
a υ υ υ . 

Let us now express this equation in 
terms of the projections of the vectors on 
the axes Mτ and Mn through point M (see 
Fig. 6.7). From the theorem of the 
projection of a vector sum (or difference) 
on an axis we obtain: 

Fig. 6.7 

1 1τ τυ − υ
0 0

lim , lim n n
nt t

a a
t tτ Δ → →

υ − υ
= =

Δ Δ
. 

Noting that projections of a vector on parallel axes are equal, draw 
thro  Mτ and Mn, respectively, and 

ctor υ1 and the tangent Mτ by 
ents to the curve at points M 

tio of the  contiguity 
s defines the curvature k of the curve at point M. As 

the curvature is the inverse of the radius of curvature ρ at M, we have: 

Δ

ugh point M1 axes Mτ' and Mn' parallel to
denote the angle between the direction of ve
the symbol ∆φ. This angle between the tang
and M1 is called the angle of contiguity. 

It will be recalled that the limit of the ra
∆φ to the arc MM1=Δ

 angle of

0s tΔ → Δ ρ

From the diagram in Fig. 6.7, we see that the projections of vectors υ 
and υ1 on the axes Mτ and Mn are* 

1lim kΔϕ
= = . 
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1 1τ 1 1τ

where υ and υ1 are the numerical values of the velocity of the particle at 
instants t and t1. Hence, 

,
cos ,

τυ = υ

υ = υ Δϕ
.

0,
sin ,

nυ =

υ = υ Δϕ
 

1
10 0

cos sinlim , limnt t
a a

tτ Δ → Δ →

υ Δϕ− υ Δ
= =

Δ Δt
ϕ

υ . 

nd υ1→υ. 
Hence, taking into account that  

. 

It will be noted that when ∆t→0, point M1 approaches M indefinitely, 
and simultaneously ∆φ→0, ∆s→0, a

0 0
lim cos 1, lim sin

t tΔ → Δ →
Δϕ = Δϕ = Δϕ

we obtain for aτ the expression 

1lim da υ − υ υ
= =

0t t dtτ Δ → Δ
. 

We shall transform the right-h
way

and side of the equation for wn in such a 
 so that it includes ratios with known limits. For the purpose, 

multiplying the numerator and denominator of the fraction under the limit 
sign by ∆φ∆s, we find: 

2

1 10 0

sinlim limn t t

sa
t s tΔ → Δ →

Δϕ Δϕ Δ υ
= υ = υ =

Δ Δ Δ ρ
. 

Finally we obtain 
2

, n
da a
dt ρ

We have thus proved that the projection of the acceleration of a 
particle on the tangent to the path is equal to the first derivative of the 
numerical value of t

τ
υ υ

= = . (6.6) 

he velocity, or the second derivative of the 
displacement (the arc coordinate) s, with respect to time; the projection of 
the acceleration on the principal normal is equal to the second power of 
the velocity divided by the radius of curvature of the path at the given point 
of t jection of the 
accel
(ab=0). This is an impo
of particle kinematics. 

he curve, the pro
eration on the binormal is zero 

rtant theorem 
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Lay off vectors aτ and an, i.e., the normal and tangential components of 
the acceleration, along the tangent Mτ and the principal normal Mn, 
respectively (Fig. 6.8). The component an is always directed along the 
inward normal, as an>0, while the component aτ can be directed either in 
the positive or in the negative direction of the axis Mτ, depending on the 
sign of the projection aτ (see Figs. 6.8a and b). 

The acceleration vector a is t
constructed with the components aτ an
are mutually perpendicular, the magn
equation: 

he diagonal of a parallelogram 
d an as its sides. As the components 
itude of vector a is given by the 

22 2
2 2

n
da a a
dtτ

⎛ ⎞υ υ⎛ ⎞= + = + ⎜ ⎟⎜ ⎟ ρ⎝ ⎠ ⎝ ⎠
(6.7) 

ms of kinematics of rigid bodi
definition of the motion and analysis of
motion of a body as a whole; (2) analysis of the 
motion of every point of the body in p

We shall begin with the consideration of 
the mo

Translation of a rigid body is such a 

body remains continuall
(Fig. 7.1) 

supe

described by the motion of any point 

. 

 
LECTURE 7 

TRANSLATION AND ROTATIONAL MOTION OF A RIGID BODY 
1. Translation motion 

 
In kinematics, as in statics, we shall regard all solids as rigid bodies, 

i.e., we shall assume that the distance between any two points of a body 
remains the same during the whole period of motion. 

Proble es are basically of two types: (1) 
 the kinematic characteristics of the 

articular. 

tion of translation of a rigid body. 

motion in which any straight line through the Fig. 7.1 
y parallel to itself. 

The properties of translational motion are defined by the following 
theorem: In translational motion, all the particles of a body move along 
similar paths (which will coincide if 

rimposed) and have at any instant the 
same velocity and acceleration. 

It follows from the theorem that the 
translational motion of a rigid body is fully 
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belo
e methods of particle kinematics examined before. 

leration w 
is ca

igid body.  
 and angular acceleration 

n in which there are always 
ich remain motionless (see 

through the axis 
of r

gle 
φ between the two planes, taken with the 
appropriate sign, w
of rotation of t
angle positive if it is laid off counterclockwise 
from

sured in radians. 
 instant is completely specified if we 

know
(7.1) 

 a rigid body. 
the rotation of a rigid body 
ion ε. 

e is equal in magnitude to 
espect to time.  

nging to it. Thus, the analysis of translational motion of a rigid body is 
reduced to th

The common velocity υ of all the points of a body in translational 
motion is called the velocity of translation, and the common acce

lled the acceleration of translation. Vectors υ and a can, obviously, be 
shown as applied at any point of the body. 

 
2. Rotational motion of a r

Angular velocity
 
Rotation of a rigid body is such a motio

two points of the body (or body extended) wh
Fig. 7.3). The line AB through these fixed 
points is called the axis of rotation. 

To determine the position of a rotating 
body, let us pass two planes 

otation Az: plane I, which is fixed, and 
plane II through the rotating body and rotating 
with it (Fig. 7.3). The position of the body at 
any instant will be fully specified by the an

hich we shall call the angle 
he body. We shall consider the 

Fig. 7.3  the fixed plane by an observer looking 
from the positive end of axis Az, and negative 
if it is laid off clockwise. Angle φ is always mea

The position of a body at any
 the angle φ as a function of time t, i.e., 

( )tϕ = ϕ . 

Eq. (7.1) describes the rotational motion of
The principal kinematic characteristics of 

are its angular velocity ω and angular accelerat
The angular velocity of a body at a given tim

the first derivative of the angle of rotation with r
d
dt
ϕ

ω= . (7.2) 
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Eq. (7.2) also shows that the value of ω is equal to the ratio of the 
infin

n. It will be noticed that ω>0 
when the ro
clockwise. The dimension of angular ve
seco

itesimal angle of rotation dφ to the corresponding time interval dt. The 
sign of φ specifies the direction of the rotatio

tation is counterclockwise, and ω<0 when the rotation is 
locity, if the time is measured in 

nds, is  

[ ] 1radian =s−ω = . 
sec

as the radian is a dimensionless unit. 
The angular velocity of a body can be denoted by a vector ω of 

magnitude ω
which the rotation is seen as counterclockwise (see Fig. 7.4). Such a vector 
simu

 along the axis of rotation of the body in the direction from 

ltaneously gives the magnitude of the angular velocity, the axis of 
rotation, and the sense of rotation about that axis. 

The angular acceleration of a body at a given time is equal in 
magnitude to the first derivative of the angular velocity, or the second 
derivative of the angular displacement, of the body with respect to time. 

dω
dt

ε = . (7.3) 

The dimension of angular acceleration is [ε] = s-2. 
in magnitude, the rotation is 

acce

rotation. The direction of ε coincides with 
that of ω w
sense when the rotation is retarded (Fig. 7.4b). 

t a distance h from the axis of 
s, point M describes a circle of 

radius h in a plane perpendicular to the axis of rotation with its centre C on 

If the angular velocity increases 
lerated, if it decreases, the rotation is 

retarded. It will be readily noticed that the 
rotation is accelerated when ω and ε are of 
the same sign, and retarded when they are 
of different sign. 

By analogy with angular velocity, the 
angular acceleration of a body can be 
denoted by a vector ε along the axis of Fig. 7.4 

hen the rotation is accelerated (Fig. 7.4a), and is of opposite 

 
3. Velocities and accelerations of the points of a rotating body 

 
Consider a point M of a rigid body a

rotation Az (Fig. 7.3). When the body rotate
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that axis. If in time dt the body makes an infinitesimal displacement 
through an angle dφ, point M will have made a very small displacement ds 
= h dφ along its path. The velocity of the point is the ratio of ds to dt, i.e., 

ds dh
dt dt

ϕ
υ = = , 

or 

tangent to the circle described by point M, or 
perpendicular to the plane through the axis of rotation and the point M. 

In order to determine the acceleration of point M, we apply equations 

hυ = ω . (7.4) 
This velocity υ is called the linear, or circular, velocity of the point M 

(not to be confused with its angular velocity). 
Thus, the linear velocity of a point belonging to 

a rotating body is equal to the product of the 
angular velocity of that body and the distance of the 
point from the axis of rotation. The linear velocity is 

2

, a υ
= . ndtτ ρ

In our case, ρ=h. Substituting the express

da υ
=

ion for υ from Eq. (7.4), we 
obtain 

2 2

, n
d ha h a
dt hτ
ω ω

= = , 

and finally 
2, na h a hτ = ε = ω . (7.5) 

The tangential acceleration aτ 
is tangent to the path (in the 
direction of the rotation if it is 
acce

n if it is retarded); the
normal acceleration an is always 
directed along the radius h towards 
the axis of rotation (Fig. 7.6a). 

al of point M is 

lerated and in the reverse 
directio  

The tot
2 2 2 2 2

na a a h hτ= + = ε + ω4 , 

Fig. 7.5 

Fig. 7.6 
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or 
2 4a h= ε + ω . 

 
LECT
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PP
8.18.1  

the connecting rod of the connecting rod of 
aa

tion. tion. 
ider the section S of a ider the section S of a 

sing any plane Oxy 
a fixed plane P (see Fig. 8.1). 

sing any plane Oxy 
a fixed plane P (see Fig. 8.1). Fig. 8.1 

MM' normal to plane P move in the same 
way. Therefore, in investigating plane motion 
it is sufficient to investigate the motion
section S of that body in the plane Oxy. In
book we shall always take the plane 
parallel to the page and represent a body b
section S. 

MM' normal to plane P move in the same 
way. Therefore, in investigating plane motion 
it is sufficient to investigate the motion
section S of that body in the plane Oxy. In
book we shall always take the plane 
parallel to the page and represent a body b
section S. 

The position of section S in plane Ox
completely specified by the position of
line AB in this section (Fig. 8.2). The p
specified by the coordinates xА and yА of 
an arbitrary line AB in section S and axis x. 

The point A chosen to define the position
pole. As the body moves, the quantities xА, yА a
motion of the body, i.e., its position in space at a
completely specified if we know. 

( ), ( ), ( )A A

The position of section S in plane Ox
completely specified by the position of
line AB in this section (Fig. 8.2). The p
specified by the coordinates xА and yА of 
an arbitrary line AB in section S and axis x. 

The point A chosen to define the position
pole. As the body moves, the quantities xА, yА a
motion of the body, i.e., its position in space at a
completely specified if we know. 

( ), ( ), ( )A A

Fig. 8.2 

the line Athe line A

x x t y y t t= = ϕ = ϕ . (8.1) 

f a rigid bEqs.(8.1) are the equations of plane motion o ody. 
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We conclude that the plane motion of a rigid body is a combination of 
a translation, in which all the points move in the same way as the pole A, 
and of a rotation about that pole *. 

The principal kinematic characteristics of this type of motion are the 
velo

for any time t from Eqs. (8.1). 
In analysing plane motion, we a

as the pole. Let us consider a point C
pole
posi

latory 
com

com
allel to AB, we find that at any 
onst. Hence 

city and acceleration of translation, each equal to the velocity and 
acceleration of the pole (υtrans = υA, atrans = aA), and the angular velocity ω 
and angular acceleration ε of the rotation about the pole. The values of 
these characteristics can be found 

re free to choose any point of the body 
 as a 

 instead of A and determine the 
tion of the line CD making an angle 

φ1 with axis x (Fig. 8.3). The 
characteristics of the trans

ponent of the motion would have 
been different, for in the general case 
υC ≠ υA and aC ≠ aA (otherwise the motion 
would be that of pure translation). The 
characteristics of the rotational Fig. 8.3 

ponent of the motion ω and ε remain, 
however, the same. For, drawing CB1 par
instant of time angle φ1 = φ – α, where α = c

2 2
1 1

2 2,d d d d
dt dt dt dt
ϕ ϕ ϕ ϕ

= = , 

or 

1 1,ω = ω ε = ε . 

Hence, the rotational component of mot
position of the pole. 

 
2. Determination of the velocity of a point of a body  

 

ion does not depend on the 

Plane motion of a rigid body is a combination of a translation in which 
all points of the body move with the velocity of the pole vA and a rotation 
about that pole. Let us show that the velocity of any point M of the body is 

 geometrical sum of its velocities 
for each component of the motion. 

The position of a point M in 
section S of the body is specified with 

the
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refer ig. 
radius vector of the pole A, r'=AM is the vector which 

specifies the position of point M with reference to the axes Ax'y' that 
perform tr n S with 
reference to those axes is the motion about pole A). Then, 

ence to the coordinate axes Oxy by the radius vector r = rA + r' (F
8.4), where rA is the 

anslational motion together with A (the motion of sectio

A
M

d d d
dt dt dt

′
= = +

r r rυ . 

In this equation first term is equal to the velocity of pole A; the second 
term t M at rA = const., i.e., when A is 

 its section S) 
 the preceding equation that 

 is equal to the velocity υmA of poin
fixed or, in other words, when the body (or, strictly speaking,
rotates about pole A. It thus follows from

M A MA= +υ υ υ . 

The velocity of rotation υmA of point
( )MA MAMAυ = ω ⊥υ MA , 

where ω is the angular velocity of the r
body. 

Thus, the velocity of any point M o
geometrica

(8.2) 

 M about pole A is 
(8.3) 

otation of the 

f a body is th
l sum of the velocity of any other point A 

taken as the pole and the velocity of rotation of point 
M about the pole. The m nitude and direction of the 
velocity υm are found by constructing a parallelogram 
(Fig

 
The use of Eq

usua  Eq. 
(8.2) several simpler and mo
velocity of any point of a body

e projections of the 
ies of two points of a rigid body on the straight line joining those 

poin

Projecting both members of the equation on 

e 

ag

. 8.5). 
 

3. Theorem of the projections of the velocities of 
two points of a body 

Fig. 8.5 

. (8.2) to determine the velocities of the points of a body 
lly leads to involved computations. However, we can evolve from

re convenient methods of determining the 
. 

One of these methods is given by the theorem: Th
velocit

ts are equal. 
Consider any two points A and B of a 

body. Taking point A as the pole (Fig. 8.6) 
we have from Eq. (50) υB = υA + υBA. 
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AB and taking into account that vector υBA. is perpendicular to AB, we 
obtain: 

and 

ation of the velocity of a point of a body using the 
o velocity 

rmining the velocity of any 

tantaneous 
centre of zero velocity 
to the section S of a b

is in non-translational motion, such one and 
only one point always exists at
Let poin
(Fig. P of 
intersection of per vector υB will be 
the instantaneous centre of zero velocity, as υP = 0. For, if we assumed that 
υP ≠

aneously perpendicular to AP 
is impossible. It also follows 

o other point of section S can 
ction of υB on Ba is not zero 

time t, the velocity of point A 
y Eq. (8.2), be 

cos cosA Bυ α = υ β . (8.4) 

the theorem is proved. This result offers a simple method of 
determining the velocity of any point of a body if the direction of motion of 
that point and the velocity of any other point of the same body are known. 

 
LECTURE 9 

PLANE MOTION OF A RIGID BODY (continuation) 
4. Determin

instantaneous centre of zer
 
Another simple and visual method of dete

point of a body performing plane motion is 
based on the concept of instantaneous 
centre of zero velocity. The ins

Fig. 8.7 

is a point belonging 
ody or its extension 

which at the given instant is momentarily at 
rest. 

It will be readily noticed that if a body 

 any instant t. 
ts A and B in section S of a body 

8.7) have, at time t, non-parallel velocities υA and υB. Then point 
pendiculars Aa to vector υA and Bb to 

 0, then, by the theorem of the projections of the velocities of the points 
of a body, vector υP would have to be simult
(as υA ^ AP) and to BP (as υB ^ BP), which 
from the theorem that, at the given instant, n
have zero velocity (e.g., for point a, the proje
and consequently υa ≠ 0). 

If, now, we take a point P as the pole at 
will, b

A P AP AP= + =υ υ υ υ , 

as υP = 0. The same result can be obtained fo
Thus, the velocity of any point of a body lyin

r any othe  the body. 
g in section S is equal to the 

r point of
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velocity of its rotation about the instantaneous centre of zero velocity P. 
From Eqs. (8.2) we have 

( ),
( ), etc.

A A

B B

PA
PB

υ = ω ⊥
υ = ω ⊥

υ PA
υ PB

, (8.5) 

It also follows from Eqs. (8.5) that 

A B

PA PB
υ υ

= , (8.6) 

i.e., 
s centre of zero velocity. 

These results lead to the following conclusions: 
(1)

eir respective velocities, or to the tangents to their 
paths. 

(2) To determine the velocity
know the magnitude and direction of the velocity of any point A of that 
body  another point B of the same body. 
Then, by erecting from points A and B perpendiculars to υA and υB, we 
obtain the inst
υA  the sense of rotation of the body. Next, knowing υA, we can find from 

tion. 
n from Eqs. (8.5), is at 

any 

that the velocity of any point of a body is proportional to its distance 
from the instantaneou

 To determine the instantaneous centre of zero velocity, it is 
sufficient to know the directions of the velocities υA and υB of any two 
points A and B of a section of a body (or their paths); the instantaneous 
centre of zero velocity lies at the intersection of the perpendiculars erected 
from points A and B to th

 of any point of a body, it is necessary to 

 and the direction of the velocity of

antaneous centre of zero velocity P and, from the direction of 
,

Eq. (54) the velocity υM of any point M of the body. Vector υM is 
perpendicular to PM in the direction of the rota

(3) The angular velocity of a body, as can be see
given instant equal to the ratio of the velocity of any point belonging to 

the section S to its distance from the instantaneous centre of zero velocity 
P: 

B

PB
υ

ω= , (8.7) 

Let us evolve another expression for ω It follows from Eqs. (8.2) and 
(8.3) that υBA = │υB – υA│ and υBA = ωAB whence 

( )B A B A

AB AB
− + −

ω= =
υ υ υ υ

. (8.8) 
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When υA = 0 (point A is the instantaneous centre of zero velocity), Eq. 
(8.8) transforms into Eq. (8.7). 

Eqs. (8.7) and (56) give the same quantity, since 
the rotation of the section S about either point A or 
point P takes place with the same angular velocity ω. 

Let us consider some special cases of the 
instantaneous centre of zero velocity. 

(a) If p
rolling without slipping along a fixed cylindrical 
surfa

the
instantaneous centre of zero velocity (υP = 0 because 
if there is no slipping, the cont
must have the same velocity, and the second body is 
moti

city lies in infinity, and the velocities of all points are parallel 
to υ

υBcosβ, i.e., υB = υA; the result is the same for all other points of 
the b

instantaneous 

und from Eq. 
t is zero. 
perpendicular 
cated by the 

ruction shown in Fig. 8.10. The validity of this construction follows 
from s, we have to 

lane motion is performed by a cylinder 

ce, the point of contact P (Fig. 8.8) is 
momentarily at rest and, consequently, is  

acting points of both bodies 

onless). An example of such motion is that of a wheel 
running on a rail. 

(b) If the velocities of points A and B of the body are parallel to each 
other, and AB is not perpendicular to υA (Fig. 8.9) the instantaneous centre 
of zero velo

A. From the theorem of the projections of velocities it follows that 
υAcosα = 

ody. Consequently, in this case the velocities of all points of the body 
are equal in magnitude and direction at every instant, i.e., the 
distribution of the velocities of the body is that of translation (this state of 
motion is also called instantaneous translation). It will be fo
(8.8) that the angular velocity ω of the body at the given instan

(c) If the velocities of points A and B are parallel and is 
to υA, the instantaneous centre of zero velocity P can be lo
const

 the proportion (8.6). In this case, unlike the previous one
know the magnitudes of velocities υA and υB to locate the instantaneous 
centre of zero velocity P. 

(d) If the velocity vector υB of a point in section S 
and the angular velocity ω are known, the position of 
the instantaneous centre of zero velocity P, lying on 
the perpendicular to υB (see Fig. 8.7), can be 
immediately found from Eq. (8.7), which yields 
BP = υB/ω. 

 

Fig. 8.8 

Fig. 8.9 

Fig. 8.10 
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5. Determination of the acceleration of a point of a body 
 
We shall demonstrate that, like velocity, the acceleration of any point

M of a body in plane motion is composed of its acceler
and rotation. The location of point M with respect to axe
is specified by the radius vector r = rA + r', where r' = A

 
ations of translation 
s Oxy (see Fig. 8.4) 
M. Hence, 

2 2 2

2 2 2
A

M
d d d
dt dt dt

′
= = +a r r r . 

In this equation the quantity first term is the acceleration of the pole A, 
and its r th the the second term is the acceleration of point M in 
body round A. Hence, 

otation wi

M A MA= +a a a . (8.9) 

From Eqs. (7.5) and (7.6), the acceleration of point M in its rotation 
abou  A is t

4 2= ω + εMA MA . (8.10) 

whe

ation of 
the point M in its rotation together with the body about that pole. The 
magnitude and direction of the acceleration 
aM are determined by constructing a 
para

logram in Fig. 8.11
makes the soluti
becomes necessary first to calculate the angle 
and 

problem solutions it is more 
convenient to replace
tangental and normal MA

n

a

re ω and ε are the angular velocity and angular acceleration of the 
body. 

Thus, the acceleration of any point M of a body is composed of the 
acceleration of any other point taken for the pole and the acceler

llelogram (Fig. 8.11). 
However, the computation of aM by 

means of the paralle  
on more difficult, as it 

then the angle between vectors aMA and aA 
Therefore, in 

Fig. 8.11  vector aMA by its 
components aτ  and 

an
MA, where 

τ 2,MA MAa MA a MA= ε = ω . (8.11) 
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Vector aτMA is perpendicular 
to AM in the direction of the 
rotation if it is accelerated, and 
opposite the rotation if it is 
retarded; vector an

MA is always 
directed from point M to the pole 
A (Fig. 8.12). 

Instead of Eq. (8.9) we 
obtain 

n
M A MA MA

τ= + +a a a a . 

If pole A is in non-rectilinear motion, its acceleration is also composed 
of the tangential and normal accelerations, hence 

Fig. 8.12 

(8.12) 

nn
M A A MA MA

τ τ= + + +a a a a a . (8.13) 

e equation and then 
find king a graphic construction. 

 

Dynamics is the section o
of material bodies subjected t

T

The concept of force as a quantity characterising the measure of 
mechanical interaction of ma  introduced in the course of 
statics. But in statics we nt, without considering 
the possibility of their changing with time. In real systems, alongside of 
con

tion of variable forces 
wh

f a body, and on its velocity (examples of 
dependence on time are furnished by the tractive force of an electric 

the magnitudes of the latter two components being obtained from Eq. 
(8.11). Eqs. (8.11), (8.12) and (8.13) should be used in solving problems, 
first computing the vectors in the right-hand part of th

ing their geometrical sum or ma

LECTURE 10 
PARTICLE DYNAMICS 

 
f mechanics which treats of the laws of motion 
o the action of forces. 

he motion of bodies from a purely geometrical point of view was 
discussed in kinematics. Unlike kinematics, in dynamics the motion of 
bodies is investigated in connection with the acting forces and the inertia of 
the material bodies themselves. 

terial bodies was
 treated all forces as consta

stant forces (gravity can generally be regarded as an example of a 
constant force), a body is often subjected to the ac

ose magnitudes and directions change when the body moves. Variable 
forces may be the applied (active) forces or the reactions of constraints. 

Experience shows that variable forces may depend in some specific 
ways on time, on the position o
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loc

uantitative measure of the inertia of a body is a physical quantity 
cal

the distribution of mass). 

ize of which 
can

ed with the size of the body 
itse

can always be considered as a 
par

 treated as material points. 
Obviously, the investigation of the motion of a single particle should 

omotive whose rheostat is gradually switched on or off or the force 
causing the vibration of the foundation of a motor with a poorly centred 
shaft; the Newtonian force of gravitation or the elastic force of a spring 
depending on the position of a body; the resistance experienced by a body 
moving through air or water depends on the velocity. In dynamics we shall 
deal with such forces alongside of constant forces. The laws for the 
composition and resolution of variable forces are the same as for constant 
forces.  

The concept of inertia of bodies arises when we compare the results of 
the action of an identical force on different material bodies. Experience 
shows that if the same force is applied to two different bodies initially at 
rest and free from any other actions, in the most general case the bodies 
will travel different distances and acquire different velocities in the same 
interval of time. 

Inertia is the property of material bodies to resist a change in their 
velocity under the action of applied forces. If, for example, the velocity of 
one body changes slower than that of another body subjected to the same 
force, the former is said to have greater inertia, and vice versa. 

The q
led the mass of that body. In mechanics mass m is treated as a quantity 

which is positive and constant for every body. 
In the most general case the motion of a body depends not only on its 

total mass and the applied forces; the nature of motion may also depend on 
the shape of the body or, more precisely, on the mutual position of its 
particles (i.e., on 

In the initial course of dynamics, so as to neglect the influence of the 
shape (distribution of the mass) of a body, the concept of a material point, 
or particle is introduced. 

A particle is a material body (a body possessing mass) the s
 be neglected in investigating its motion. 
Actually any body can be treated as a particle when the distances 

travelled by its points are very great as compar
lf. For example, in studying the motion of a planet about the sun or 

determining the range of an artillery shell, etc., the planet or shell can be 
treated as particles. Furthermore, as will be shown in the dynamics of 
systems, a body in translational motion 

ticle of mass equal to the mass of the whole body. Finally, the parts into 
which we shall mentally divide bodies in analysing any of their dynamical 
characteristics can also be
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pre
 is conventionally subdivided 

into

87. 

ted to any 
force is called motion under no forces, or inertial motion. 

The inertia law stat rties of matter: that of 
being always in motion. It establishes the equivalence, for material bodies, 
of th

 of accuracy is 
obta

 force. 

cede the investigation of systems of particles, and in particular of rigid 
bodies. Accordingly, the course of dynamics

 particle dynamics and the dynamics of systems of particles. 
 

1. The laws of dynamics  
 
The study of dynamics is based on a number of laws generalising the 

results of a wide range of experiments and observations of the motions of 
bodies–laws which have been verified in the long course of human history. 
These laws were first systematised and formulated by Isaac IN ewton in his 
classical work Principia Mathematica published in 16

The First Law (the Inertia Law), discovered by Galileo in 1638, states: 
A particle free from any external influences continues its state of rest or 
uniform rectilinear motion, except and so far as it is compelled to change 
that state by impressed forces. The motion of a body not subjec

es one of the basic prope

e states of rest and of motion under no forces. It follows, then, that if 
F = 0, a particle is at rest or moves with a velocity of constant magnitude 
and direction (υ = const.); the acceleration of the particle is, evidently, zero 
(a = 0); if the motion of a particle is not uniform and rectilinear, there must 
be some force acting on it. 

A frame of reference for which the inertia law is valid is called an 
inertial frame (or, conventionally, a fixed frame). Experience shows that, 
for our solar system, an inertial frame of reference has its origin in the 
centre of the sun and its axes pointed towards the so-called "fixed" stars. In 
solving most engineering problems a sufficient degree

ined by assuming any frame of reference connected with the earth to be 
an inertial system. 

The Second Law (the Fundamental Law of Dynamics) establishes the 
mode in which the velocity of a particle changes under the action of a 
force: The product of the mass of a particle and the acceleration imparted 
to it by a force is proportional to the acting force; the acceleration takes 
place in the direction of the

Mathematically this law is expressed by the vector equation 
m =a F . (10.1) 
The dependence between the magnitudes of the acceleration and the 

force is 
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ma F= . (10.2) 
The second law of dynamics, like the first, is valid only for an inertial 

frame. It can be immediately seen from the law that the measure of the 
inertia of a particle is its mass, since two different particles subjected to the 
action of the same force receive the same acceleration only if their masses 
are equal; if their masses are different, the particle with the larger mass 
(i.e., the more inert one) will receive a smaller acceleration, and vice versa. 

A set of forces acting on a particle can, as we know, be replaced by a 
single result
the e

=∑F . (10.3) 

ant R equal to the geometrical sum of those forces. In this case 
quation expressing the fundamental law of dynamics acquires the form 

ma k
k

This result can also be obtained by applying, instead of the 
parallelogram principle, the law of independent action of forces, according 
to which each of a number of forces acting on a particle imparts to it the 
same acceleration as it would have imparted if acting alone. 

Weight and Mass. All bodies close to the surface of the earth are 
subject to the force of gravity P, equal in magnitude to a body's weight. It 
has been established experimentally that under the action of force P all 
bodies falling to the earth (from a small height and in vacuo) possess the 
same acceleration g; this is known as the acceleration of gravity or of free 
fall. Applying Eq. (10.2), for free fall we have 

Pmg P or m= = . (10.4) 

ight divided by 
the 

ach other forces equal in 
magnitude and acting in opposite directions along the straight line 
connecting the two partic

It should be noted that the forces of interaction between free particles 
(or bodies) do not form a balanced system, as they act on different objects. 

g

Eq. (10.4) gives the body's mass in terms of its weight, and vice versa; 
it establishes that a body's weight is the product of its mass and 
acceleration of gravity, and its mass is the quotient of its we

acceleration of gravity. Weight, like the acceleration of gravity g, 
changes with latitude and altitude; mass is a constant for every given body 
(or particle). 

The Third Law (the Law of Action and Reaction) establishes the 
character of mechanical interaction between material bodies. For two 
particles it states: Two particles exert on e

les. 
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For 

o their masses. 

ics for a free and a constrained particle 

amics, since they give the relation between 
acce

gineering it is often necessary to investigate the constrained 
motion of a particle, i.e., cases when constraints attached to a particle 
com

 such cases we shall use, as in statics, the axiom of constraints which 
state

example, if a piece of iron and a magnet are placed near each other on a 
smooth surface, they will move towards each other under the influence of 
their mutual attraction and not remain at rest. Since the magnitude of the 
force acting on each body is the same, it follows from the second law of 
dynamics that the accelerations of the two bodies will be inversely 
proportional t

The third law of dynamics, which establishes the character of 
interaction of material particles, plays an important part in the dynamics of 
systems. 

 
3. The problems of dynam

 
The problems of dynamics for a free particle are: (1) knowing the 

equation of motion of a particle, determine the force acting on it (the first 
problem of dynamics); (2) knowing the forces acting on a particle, 
determine its equation of motion (the second, or principal, problem of 
dynamics). 

Both problems are solved with the help of Eq. (1) or (3), which express 
the fundamental law of dyn

leration a, i.e., the quantity characterising the motion of a particle, and 
the forces acting on it. 

In en

pel it to move along a given fixed surface or curve. 
In
s that any constrained particle can be treated as a free body detached 

from its constraints provided the latter is represented by their reactions N. 
Then the fundamental law of dynamics for the constrained motion of a 
particle takes the form 

k
k

m = +∑a F N , (10.5) 

where Fα
k denotes the applied forces acting on the particle. 

For constrained motion, the first problem of dynamics will usually be: 
dete

α

rmine the reactions of the constraints acting on a particle if the motion 
and applied forces are known. The second (principal) problem of dynamics 
for such motion will pose two questions, namely, knowing the applied 
forces, to determine: (a) the equation of motion of the particle and (b) the 
reaction of its constraints. 
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4. Rectilinear motion of a particle 
 

We know from
acceleration of a par

ynamics is: knowing R, 
find the equation of m
Eq. (1 .3) gives the g both sides of the 
equation on axis

 kinematics that in rectilinear motion the velocity and 
ticle are continuously directed along the same straight 

line. As the direction of acceleration is coincident with the direction of 
force, it follows that a free particle will move in a straight line whenever 
the force acting on it is of constant direction and the velocity at the initial 
moment is either zero or is collinear with the force. 

Consider a particle moving rectilinearly under the action of an applied 
force R. The position of the particle on its path is 
specified by its coordinate x (Fig. 10.1) In this case 
the principal problem of d

otion of the particle x = f(t). 
 relation between x and R. Projectin

Fig. 10.1 

0
 Ox, we obtain: 

x x kx
k

ma R F= =∑ , 

or, as 
2d xm F=∑ . 2 kx

kdt

Eq. (10.6) is called the differential equation of 
particle. It is often more convenient to replace
differential equations containing first derivatives: 

(10.6) 

rectilinear motion of a 
 Eq. (10.6) with two 

,x
kx x

k

d dxm F
dt dt
υ

= = υ∑ . (10.7) 

Whenever the solution of a problem requires that the velocity be found 
as a function of the coordinate x instead of time t (or when the forces 

lves depend on x), Eq. (10.7) is converted to the variable x. Eq. themse
(10.7) takes the form 

x
x kx

k

dm F
dx
υ

υ =∑ . (10.8) 

The principal problem of dynamics is, essentially, to develop the 
equation of motion x = f(t) for a particle from the above equations, the 
forces being known. For this it is necessary to integrate the corresponding 
differential equation. In order to make clear the nature of the mathematical 
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problem, it should be recalled that the fo
can depend on time t, on the 
υx. Consequently, in the gen
diffe

rces in the right side of Eq. (10.6) 
position of the particle x, and on the velocity 
eral case Eq. (10.6) is, mathematically, a 

rential equation of the second order of the form 
2

2 , ,d x dxt x
dt dt

⎛ ⎞= Φ⎜ ⎟
⎝ ⎠

. (10.9) 

The equation c
determining the form
applied forces. When Eq. (10.9) is 

an be solved for every specific problem after 
 of its right-hand member, which depends on the 

integrated for a given problem, the 
general solution will include two constants of integration C1 and C2, and 
the general solution will be 

( )1 2, ,x f t C C= . (10.10) 

To solve a concrete problem, it is necessary to determine the values of 
the constants C1 and C2. For this we introduce the so-called initial 
conditions. 

Investigation of any motion begins with some specified instant called 
the initial time t = 0, usually the m
of the given forces sta
time is called its initial displacement, and its velocity at that time is its 
initi

nd velocity of the particle at the initial time. 
In the case of r

the form 

e initial conditions we can determine the constants C  and C  
and 

oment when the motion under the action 
rts. The position occupied by a particle at the initial 

al velocity (a particle can have an initial velocity either because at time 
t = 0 it was moving under no force or because up to time t = 0 it was 
subjected to the action of some other forces). To solve the principal 
problem of dynamics, we must know, besides the applied forces, the initial 
conditions, i.e., the position a

ectilinear motion, the initial conditions are specified in 

0 0at 0,   and xt x x= = υ = υ . (10.11) 

From th 1 2
find the partial solution of Eq. (10.9), which gives the equation of 

motion of the particle: 

( )0 0, ,x f t x= υ . (10.12) 

The following simple example will explain the above. 
Let there be a force Q of constant magnitude and direction acting on a 

particle. Then Eq. (10.7) acquires the form 
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x
x

dm Q
dt
υ

= . 

As Qx = const, multiplyin
integ

g both members of the equation by dt and 
rating, we obtain: 

1
x

x
Q t C
m

υ = + . (10.13) 

Substituting the value of υx into Eq. (10.7), we have: 

1t C
dt m

= + . 

Multiplying by dt and integrating once ag

xdx Q

ain, we obtain: 

2
1 2

1
2

xQx t C t C
m

= + + . (10.14) 

0). 
Now let us de

the specific problem that the initial conditions are given by (10.11). 
Solu  time, including t 
= 0.  and (10.14), we 
should obtain υ0 an  x0 instead of υx and x, i.e., we should have 

x . 

1 nd C2 which 
satisfy the initial conditio
into Eq. (10.14), we finally obtain th
form

This is the general solution of Eq. (10.9) for the specific problem in the 
form given by Eq. (10.1

termine the integration constants C1 and C2, assuming for 

tions (10.13) and (10.14) must satisfy any moment of
 Therefore, substituting zero for t in Eqs. (10.13)

d

1 0 2 0

These equations give the values of the constants C  a

,C C= υ =

ns of a given problem. Substituting these values 
e relevant equation of motion in the 

 expressed by Eq. (10.12): 

21 xQ
0 0 2

x x t t
m

= + υ + . (10.15) 

 
5. Solution of problems 

 
Solution of problems of dynamics by integrating the differential 

equations of motion includes the following operations: 
(1) Writing the differential equation of motion. For this, 
(a) Choose an origin (usually coinciding with the initial position of the 

particle) and draw a coordinate axis along the line of motion, as a rule in 
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the direction of motion; if, for the applied forces, a particle has a position 
of equilibrium, it is convenient to choose the origin to coincide with the 
position of static equilibrium. 

(b) Depict the movi
x > 0 and υx > 0; the latter condition is important when the applied forces 

clude forces depending on velocity), and draw all the forces acting on the 
particle. 

pound the projections of all the forces on the coordinate axis 
and 

ces in terms of the 
quan

y on time t, or only on distance x, or only on 
velo

) or Eq. (10.8). 

dete

otation), inserting the numerical data only in the 
final

ng particle in an arbitrary position (but such that 

in

(c) Com
substitute the sum into the right side of the differential equation of 

motion. It is important to express all the variable for
tities (t, x or v) on which they depend. 
(2) Integrating the differential equation of motion. The integration 

is carried out according to the rules of higher mathematics, depending on 
the form of the obtained equation, i.e., on the form of the right-hand 
member of Eq. (10.9). When besides the constant forces there is one 
variable force that depends onl

city υ, the equation of rectilinear motion can generally be integrated by 
the method of separating the variables. If only the velocity has to be 
determined, it is often possible to solve the problem by integrating either 
Eq. (10.7

(3) Determining the constants of integration. In order to determine 
the constants of integration, it is necessary from the conditions of the 
problem to define the initial conditions in the form (10.11). The values of 
the constants are found from the initial conditions, and they can be 

rmined directly after each integration. 
If the differential equation of motion is an equation with separable 

variables, instead of introducing integration constants we can immediately 
evaluate the definite integrals on both sides of the equation over the 
appropriate range. 

(4) Determining the required quantities and analysing the 
obtained results. In order to be able to analyse the solution and also to 
verify the dimensions, the whole solution should be carried out in the most 
general form (in letter n

 results. 
These general rules also hold for curvilinear motion. 
 

6. Curvilinear motion of a particle 
 
Consider a free particle moving under the action of forces F1, ..., Fn. 

Let us draw a fixed set of axes Oxyz (Fig. 10.2). Projecting both members 
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of the equation (10.3) on these axes we obtain the differential equations of 
curvilinear motion of a body in terms of the projections on rectangular 
cartesian axes: 

2 2 2

2 2 2, ,kx ky kz
k k k

d x d y d zm F m F m F
dt dt dt

= = =∑ ∑ ∑ . (10.16) 

As the forces acting on the particle may 
depe
the particle, then by analogy with Eq. (10.9), the 
right-hand member
time  the coordinates x, y, z of the particle, and the 
proj

 (principal) problems of dynamics. To solve the principal 
problem of dynamics we must know, besides the acting forces, the initial 
conditions, i.e., the position and velocity of the partic
The initial conditions for a set of coordinate axes Oxyz are specified in the 
form

nd on time, the displacement or the velocity of 

s of Eq. (10.16) may contain the 
t,

ections of its velocity υx, υy, υz. Furthermore, 
the right side of each equation may include all 
these variables. 

Eqs. (10.16) can be used to solve both the first 
and the second

Fig. 10.2 

le at the initial time. 

 

0 0 0

0 0 0

, ,
at 0,

, , .x x y y z z

x x y y z z
t

⎫= = =
⎪= ⎬
⎪υ = υ υ = υ υ = υ ⎭

. 

Knowing the acting forces, by integrating Eq.
coordinates x, y

(10.17) 

 (10.16) we find the 
, z of the moving particle as functions of t , the 

equa ll contain six constants 

RECTILINEAR VIBRATION OF A PARTICLE 
 

The study of vibrations is essential for a number of physical and 
engineering fields. Although the vibration
as mechanics, radio engineering, and acoustics are of different physical 
nature, the fundamental laws hold for all of them. The study of mechanical 
vibr

ime t, i.e.
tion of motion for the particle. The solutions wi

of integration C1, C2, …, C6, the values of which must be found from the 
initial conditions (10.17). 

 
LECTURE 11 

s studied in such different fields 

ations is therefore of importance not only because they are frequently 
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encountered in engineering but also because the results obtained in 
investigating mechanical vibrations can be used in studying and 
understanding vibration phenomena in other fields. 

 
1. Free vibrations neglecting resisting forces 

 
We shall start with examining free

resis

rticle to its position of 
equilibrium O, where F=0, which is why it is called a "restoring" force. 
Examples of such ction. 

Let us derive the equation of motion of particle M. Writing the 
diffe

 vibration of a particle, neglecting 
ting forces. Consider a particle M (Fig. 11.1) 

moving rectilinearly under the action of a single 
restoring force F directed towards a fixed centre 
О and proportional to the distance from that 
centre. The projection of F on axis Ox is 

xF cx= − . (11.1) 

We see that the forced F tends to return the pa

Fig. 11.1 

 a force are an elastic force and the force of attra

rential equation of motion, we obtain: 
2

2

d xm cx
dt

= − . 

Dividing both sides of the equation by m and introduc ation ing the not

2c k
m
= , (11.2) 

we reduce the equation to the form 
2

2 0d x k x+ = . (11.32dt
Eq. (11.3) is the differential equati

) 

on of free vibrations without 
resistance. The solution of this linear homogeneous differential equation of 
the second order is sought in the form x=ent. Assuming x=ent in Eq. (11.3), 
we obtain for the determination of n the so-called characteristic equation, 
whic  
equation are purely imaginary (n =±ik), from the theory of differential 
equations th

h in the present case has the form n2–k2=0. As the solutions of this
1,2

e general solution of Eq. (11.3) has the form 

1 2sin cosx C kt C kt= + , (11.4) 

where C1 and C2 are constants of integration. 
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If we replace C  and C  by constants a and α, such that C =acosα and 
C2=asinα, we obta

1 2 1
in 

( )sinx a kt= + α , (11.5) 

This is another form of the solution of Eq. (11.3) in which the 
constants of integration appear as a and a and which is more convenient for 
general analysis. 

The velocity of a particle in this type of motion is 

( )cosx
dx ak ktυ = = + α . 
dt

(11.6) 

simple 

on. Consider a particle В moving uniformly along a 
circle of radius a from
and let the constant angu

s harmonic 
moti

The quantity a, which is the maxi
of vibration, is called the am
called the 

The vibration of a particle described by Eq. (11.5) is called 
harmonic motion.  

All the characteristics of this type of motion lend themselves to visual 
kinematic interpretati

 a point B0 defined by the angle DOB0=α (Fig. 11.2), 
lar velocity of radius OB be k. Then, at any instant 

t angle φ = — DOB = α + kt and, it will be readily noticed, the projection M 
of point В on the diameter perpendicular to DE moves according to the law 
x = a sin(kt+α), where x = OM, i.e., the projection perform

on. 
mum distance of M from the centre 

plitude of vibration. The quantity φ = α + kt is 
phase of vibration. Unlike the coordinate x, the phase φ defines 

both the position of the particle at any given time and the direction of its 
subsequent motion. For example, from position M at phase φ the particle 
will move to the right, at phase (π – φ) it will move to the left. Phases 
differing by 2π are considered identical. The 
quantity α defines the initial phase, with which 
the motion begins. For example, at α = 0 the 
motion is according to the sine law (it begins at О 
and the velocity is directed to the right); and at 
α = 0.5π y the motion is according to the cosine 
law (starting from point x = a with a velocity 
υ0 = 0). The quantity k which coincides with the 
angular velocity of the rotating radius OB in Fig. 
11.2 is called the angular, or circular, frequency 
of vibration. 

Fig. 11.2 



The time T (or τ) in which the moving particle makes one complete 
vibraton is called the period of vibration. In one period the phase changes 
by 2π. Consequently, we must have kT – 2π, whence the period 

2T
k
π

= . (11.7) 

The quantity ν, which is the inverse of the period and specifies the 
number of oscillations per second is called the frequency of vibration: 

1
2
k

T
ν = =

π
. (11.8) 

It can be seen from this that the quantity k differs from ν only by a 
constant mu
frequency. 

 and 
(11.6) x0 = a sin α and υ0/k = a cos α. By first squaring and adding these 
equations and th

ltiplier 2π. Usually we shall speak of the quantity k as of 

The values of a and α are determined from the initial conditions. 
Assuming that, at t = 0, x = x0 and υx = υ0, we obtain from Eqs. (11.5)

en dividing them, we obtain 
2

2 0 0
0 2

0

, tg kxa x
k
υ

= + α =
υ

. (11.9) 

Note the following properties of free vibration without resistance: 
(1) the amplitude and initial phase depend on the initial conditions; 
(2) the frequency k, and consequently the period T, do not depend on 

the initial conditions [see Eqs. (11.2) and (11.7)] and are invariable 
characteristics for a given vibrating system. 

It follows, in particular, that if a problem requires that only the period 
(or frequency) of vibration 
differential equation of motion in the form
imm

ct, in addition to the restoring 
forc

Obviously, in that case the equilibrium point is 

be determined, it is necessary to write a 
 (11.3). Then T is found 

ediately from Eq. (11.7) without integrating. 
 

2. Effect of a constant force on the free vibration of a particle 
 
Let the particle M in Fig. 11.3 be subje
e F directed towards the centre O, to a force 

P constant in magnitude and direction. The 
value of force F continues to be proportional to 
the distance from the centre O, i.e., F = – c OM. 

Fig. 11.3 
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Ox at a distance OO1 = δst from O, given by the equation cδst = P, or 

st
P
c

δ = . (11.10) 

We shall call δst the static deflection of the par
Placing the origin of the reference system at 

direction of force P. Then Fx = –с(x+δst), a
differential equation of motion and taking into acc
cδst = P, we have: 

ticle. 
O1, direct axis O1x in the 
nd Px = P. Writing the 
ount that, by Eq. (11.10), 

2d x 2
2 0k x

dt
+ = . 

The obtained equation, in which k is given by Eq. (11.2), is the same as 
Eq. does not affect the 
char

 the period of vibration in terms of δst. From (11.2) and 
(11.10), we have k2=P/mδst. Then Eq. (11.7) gives: 

(11.3). Hence we conclude that a constant force P 
acter of the vibrations of a particle under the action of a restoring force 

F and only displaces the centre of vibration in the direction of P by the 
amount of the static deflection δst. 

Let us express

stP
Thus, the period of vibration is in proportion to the square root of the 

static deflection δst. 
In particular, if P is the force of gravity, as in the case of vibration of a 

load on a vertical spring, then P = m

2 mT = π δ . (11.11) 

g, and Eq. (11.11) takes the form 

st2T δ
= π . 

g
(11.11) 

 

er of 
the velocity: R = –
force R is oppos
be acted upon by a restoring force F and a 
resisting force R (Fig. 11.4). Then Fx = –cx and 

3. Free vibration with a resisting force proportional to velocity 
(damped vibration) 

 
Let us see how the resistance of a surrounding medium affects 

vibrations, assuming the resisting force proportional to the first pow
μυ (the minus indicates that 

ite to υ). Let a moving particle 

Fig. 11.4 
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Rx = –μυx = –μdx/dt and the differential equation of motion is 
2

2dt dt
Dividing both sides by m, we obtain: Dividing both sides by m, we obtain: 

d x dxcx= − −μ . μ . m

2
2

2 2 0d x dxb k x
dt dt

+ + = , 

where 

(11.12) 

2 , 2c k bμ
= =

m m
. (11.13) 

It is easy to verify that k and b have the same dimension (s-1), which 
makes it possible to compare them. 

tion of free vibrations with a 
resisting force proportional to the velocity. Its solution, as in the case of 
Eq. (11.3), is sought in th
obtain the characteristic equation n2+2bn+k2 = 0, the roots of which are: 

Eq. (11.12) is the differential equa

e form x = ent. Substituting into Eq. (11.13), we 

2 2
1,2n b b k= − ± − . (11.14) 

Let us consider th
as com

e case when k > b, i.e., when the resistance is small 
pared with the restoring force. Introducing the notation 

2 2
1k b k= − . (11.15) 

from (11.14) we obtain n1,2 = –b±ik1 i.e., the solutions of the characteristic 
equation are complex. In that case the general solution of Eq. (11.12) 
differs from the solution of Eq. (11.2) only by the multiplier e-bt, i.e., it has 
the form 

( )1 1sinbt
2 1cose C k t C−= + k t , (11.16) x

or, by analogy with Eq. (11.5), 

( )1sinx ae k t= + α

The quantities a and α are constants of integra

 e-bt, the value of x = OM decreases 
with time and tends to zero. A graph of such 

Fig. 11.5 

bt− . (11.17) 

tion and are determined 
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by the initial conditions. 
Vibrations according to the law (11.17) 

are called damped because, due to the 
multiplier



vibrations is given in Fig. 11.5 [t
ae-bt x ae-bt k t α) cannot exceed unity]. 

riod of sin(k1t+α), i.e., the quantity 

he curve lies between the broken curves x 
= and = – , as sin( 1 +

The time T1, equal to the pe

1 2 2
1k b k−

is conventionally called 

2 2T π π
= = . (11.18) 

In the course of 
ibration, e.g., having begun 
. 11.4) it arrives at the same 

ng Eq. (11.7) into account, 

., that resistance to vibration 

lected in comparison with 
 

effec
The time interva

oscillating particle to th
first (maximum) displacement x  to the right takes place at time t , the 

the period of damped vibration. 
one period the particle performs a complete v
moving from position x = 0 to the right (see Fig
position, again moving to tbe right. Taki
Eq. (11.18) can be written in the form 

From the equations we see that T1 > T, i.e
tends to increase the period of vibration. When, however, the resistance is 
small (b << k), the quantity b2/k2 can be neg
unity, and we can assume T1 ≈ T. Thus, a small resistance has no practical

t on the period of vibration. 
l between two successive displacements of an 
e right or to the left is also equal to T1. Hence, if the 

1 1
second displacement x2 will be at time t2 = t1 + T1 etc. Then, by Eq. (11.17) 
and taking into account that k1T1 = 2π, we have: 

( )
( )

1

1 1

1 1 1

( )

sin ,

sin

bt

b t T

x ae k t
1

2 1 1 1 1 1 .bTx ae k t k T x

−

− +

= + α

= + + α =
 

e−

bT1, the logarithmic decrement. 

the resistance is large as 
compared with the restoring force. Introducing the notation b2–k2=r2, we 
find that in this case the solutions of the characteristic equation (11.14) are 
n1,2 = –b±r, i.e., both are real and negative (as r < b). Consequently, when 
b>k the solution of Eq. (11.12) describing the law of motion of the particle 
has 

Similarly, for any displacement xn+1 we shall have xn+1=xne-bT1. Thus 
we find that the amplitude of vibration decreases in geometric progression. 
The ratio of this progression e-bT1 is called the decrement, and the modulus 
of its logarithm, i.e., the quantity 

It follows from these results that a small resistance has practically no 
effect on the period of vibration but gradually damps it by virtue of the 
amplitude of vibration decreasing according to a law of geometric 
progression. 

Let us consider the case when b > k, i.e., 

the form 
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( ) ( )
1 2

b r t b r tx C e C e− + − −= + . 

Since with time the function e-at, where a > 0, 
decreases gradually, tending to zero, the particle 
no longer vibrates but instead, under the influence 
of the restoring force, gradually approaches the 
position of equilibrium x = 0. A graph of such 
motion (if at t = 0, x = x0 and υ  > 0) has the form 
show

Fig. 11.6 
0

hose projection on axis Ox is 
t . (11.19) 

 of Qx defined by Eq. (11.19). This type of 
distu bing force is ca

) Undamped motion of a particle 
on w

n in Fig. 11.6. 
 

4. Forced vibration. Resonance 
 
Let us consider an important case of vibration where, in addition to a 

restoring force F, a particle is also subjected to a force Q, varying 
periodically with time, w

0

This force is called a disturbing force, and the vibration caused by it is 
called forced. The quantity p in Eq. (11.19) is called the frequency of the 
disturbing force. 

A disturbing force may vary with time according to other laws, but we 
shall consider only the case

sinxQ Q p=

 
r lled a periodic force. 

Forced Vibration. Consider the (1
hich, besides the restoring force F, is acting only a disturbing force Q. 

The differential equation of motion will be 
2

sind xm cx Q pt= − + . 02dt
Divide both sides of the equation by m and assume 

0
0

Q P
m

= . (11.20) 

Then, taking into account the expression (11.2), the equation takes the 
form 

2
2

02 sind x k x P pt
dt

+ = . (11.21) 

Eq. (11.21) is the differential equation of undamped forced vibration 
of a particle. From the theory of differential equations, its solution is 
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x = x1+x2 where x1 is the general solution of the equation without the right 
side, i.e., the solution of Eq. (11.3) as given by Eq. (11.5), and x2 is a 
particular solution of the 

orm 
complete equation (11.21). 

Assuming p ≠ k, let us find the solution of x2 in the f

2 six nA=

whe
2

ve: 

sin sin

pt , 

re A is a constant such that Eq. (11.21) becomes an identity. 
Substituting the expression of х  and its second derivative into Eq. (11.21), 
we ha

2 2p 0 sinA pt k A− +
2 2

pt P pt= . 

This equation is satisfied at any t, if A (k  – p ) = P0, or 

0
2 2

PA
k p

=
−

. 

Thus, the required particular solution is 

0 sinP
2 2 2x pt= , 

k p−
(11.22) 

As x = x1 + х2 and the expression for xx is given by Eq. (11.5), the 
general solution of Eq. (11.21) takes the final form 

( ) 0
2 2sin sinPx a kt p

k p
= + α +

−
t , (11.23) 

whe by the initial 
conditions. 

Solution (11.23) shows that in the present case the vibration of a 
particle consists of (1) free vibrations of amplitude a (depending on the 
initi tural vibrations and (2) forced 
vibrations of amplitude (not depending on the initial conditions) and 
frequency p. 

In practice, due to the inevitable presence of various damping forces, 
the 

force equals the frequency of the 
known as resonance occurs. The case is not covere

re a and α are constants of integration determined 

al conditions) and frequency k called na
A 

natural vibrations rapidly disappear. Therefore in this type of motion 
the forced vibrations defined by Eq. (11.22) are of primary importance. 

Resonance. When p = k, i.e., when the frequency of the disturbing 
natural vibrations, the phenomenon 

d by Eqs. (11.22), but it 
can be proved that when resonance takes place, the amplitude of forced 
vibration increases indefinitely, as shown below in Fig. 11.7. 
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At p = k, Eq. (11.21) does not contain the 
particular solution x2 = Asin pt, and the solution 
must be sought in the form 

2 cosx Bt pt= . 

From this we obtain the law of undamped 
forced vibrations when resonance occurs: 

0 sin( )
2 2
Px t pt
p

π
= − − , (11.24) 

We see that the amplitude of forced vibration during re

Fig. 11.7 

sonance does 
incre

e differential 
equa  

ase in proportion to time, and the law of vibration has the form shown 
in Fig. 11.7. The phase shift in resonance is π/2. 

(2) Damped Forced Vibration. Consider the motion of a particle on 
which are acting a restoring force F, a damping force R proportional to the 
velocity, and a disturbing force Q given by Eq. (11.19). Th

tion of this motion has the form 
2d x dx

02 sinm cx Q pt
dt dt

= − − + . 

, we obtain: 

μ

Dividing the equation by m and taking into account the expressions 
(11.13) and (11.20)

2
2

0 sinQ pt . 2 2d x dxm b k x
dt dt

+ + = (11.25) 

the right side, i.e., of Eq. 
(11.

where A and β are constants so chosen that Eq. (11.25) becomes an 
identity. 

ty the notation pt – β = ψ, we obtain: 

( )sin 2 cosA p k bpA− + ψ + ψ

Eq. (11.25) is the differential equation of damped forced vibration of a 
particle. Its general solution, as is known, has the form x = x1+x2, where x1 
is the general solution of the equation without 

12) [at k > b this solution is given by Eq. (11.17)], and x2 is a particular 
solution of the complete equation (11.25). Let us find the solution x2 in the 
form 

sin( )x A pt= −β , 2

Substituting these expressions into the left side of Eq. (11.25) and 
introducing for the sake of brevi

2 2
0(cos sin sin cos )P= β ψ + β ψ . 
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For this equation to be satisfied at any value of ψ, i.e., at any instant of 
time, the factors of sin ψ and cos ψ in the left and right sides should be 
separately equal. Hence, 

2 2
0 0( ) cos , 2 sinA k p P bpA P− = β = β . 

First squaring and adding these equations (they are also used to 
determine β uniquely) and then dividing one by the other, we obtain: 

0
2 22 2 2 2 2

2, tgP bpA = β =
−

. (11.26) 
( ) 4 k pk p b p− +

As x = x1+x2, and the expression for x1 (when k>b) is given by Eq. 
(11.17), we have the final solution of Eq. (11.25) in the form 

( ) ( )1

where a and α are constants of integration determined by the initial 
conditions, and the expressions for A and β are given by Eqs. (11.26) and 
do not depend on the init

sin sinbtx Ae k t B pt−= + α + −β  (11.27) 

ial conditions. For b=0 the solution (11.27) is just 
(11.22) and (11.23) for the case without 
resis

(11.27); Fig. 11.8a] and forced vibration 
[the second term in Eq. (11.27); Fig. 
11.8b]. It was established that it is 
trans

called the transient period, can b
neglected. 

 the equation ae-bt= 0.01 
A, 

ting forces. 
These vibrations are compounded of 

natural vibration [the first term in Eq. 

ient and is damped fairly quickly, 
and after a certain interval of time ttr, 

e 

If, for example, we assume that free 
vibrations can be neglected from the 
moment when their amplitude is less than 
0.01 A, then the value of ttr can be 
determined from Fig. 11.8 

tr
1 100ln at
b A

= . 

We see, thus, that the less the resistance
the greater the transient period. 

(11.28) 

 (i.e., the less the value of b), 
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A possible picture of transient vibration according to the law (11.27) 
and starting from rest, is shown in Fig. 11.8c. Given other initial conditions 
and 

iod elapses the natural 
vibrations will, for all practical purposes, cease and the particle will vibrate 
according to the la

ibration, a sustained periodic motion with 
an a

OF RIGID BODIES 
1. Mechani

 

 particles. 
External forces are defined as the forces exerted on the members of a 

system by particles or bodies o the given system. Internal 
forces f the 
same system l F ), and 
internal fo

Both external and internal forces can be either active forces or 
reac

 the 
earth

 from the third law of dynamics, which 
state

ratios of the frequencies p and k1, the character of the vibrations in the 
time interval 0 < t < ttr can be quite different. 

However, in all cases, after the transient per

w 

2 sin( )x A pt= −β . (11.29) 

This is steady-state forced v
mplitude A denned by Eq. (11.26) and a frequency p equal to the 

frequency of the disturbing force. The quantity β characterises the phase 
shift of forced vibration with respect to the disturbing force. 

 
LECTURE 12 

INTRODUCTION TO THE DYNAMICS OF A SYSTEM. 
MOMENTS OF INERTIA 

cal systems. External and internal forces 

A mechanical system is defined as such a collection of material points 
(particles) or bodies in which the position or motion of each particle or 
body of the system depends on the position and motion of all the other 
particles or bodies. We shall regard a body as a system of its

 not belonging t
 are defined as the forces of interaction between the members o

. We shall denote external forces by the symbo (e

rces by the symbol F(i). 

tions of constraints. The division of forces into external and internal is 
purely relative, and it depends on the extent of the system whose motion is 
being investigated. In considering the motion of the solar system as a 
whole, for example, the gravitational attraction of the sun acting on

 is an internal force; in investigating the earth's motion about the sun, 
the same force is external. 

Internal forces possess the following properties: 
(1) The geometrical sum (the principal vector) of all the internal forces 

of a system is zero. This follows
s that any two particles of a system (Fig. 12.1) act on each other with 
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equal and oppositely directed forces F(i)
12 and 

F(i)
21, the sum of which is zero. Since the same is 

true for any pair of particles of a system, 
( ) 0i
k =∑F . 

k

(2) The sum of the moments (the principal 
moment) of all the internal forces of a system 
with respect to any centre or axis is zero. For if 
we take an arbitrary centre O, it is apparent from 
Fig. 12.1 that mO(F(i)

12)+mO(F(i)
21)=0. The same 

result holds for the moments about any axis. He
whole we have: 

Fig. 12.1 

nce, for the system as a 

( ) ( )( ) 0 or ( )i i
O k x k 0m=

k k
=∑ ∑m F F . 

at the internal forces are 
 the system, for they are 
ay cau mutual 
ed on  given 

2. Mass of a system. Centre of mass  
 
The motion of a system depends, besides the acting forces, on its total 

mas

It does not follow from the above, however, th
mutually balanced and do not affect the motion of
applied to different particles or bodies and m
displacement. The internal forces will be balanc
system is a rigid body. 

 

se their 
ly when a

s and the distribution of this mass. The mass of a system is equal to the 
arithmetical sum of the masses of all the particles or bodies comprising it: 

k
k

M m=∑ . 

In a homogeneous field of gravity, where g = const., the weight of 
every particle of a he distribution of 
mass can be judged according to the posi
rewr

body is proportional to its mass, hence t
tion of the centre of gravity. Let us 

ite the equations defining the coordinates of the centre of gravity  in a 
form manifestly including mass. Cancelling out g, we obtain: 

1 1 1, ,C k k C k k C k k
k k k

x m x y m y z m z= = =∑ ∑ ∑ . (12.1) 
M M M

The equations include only the masses m  of the material points 
(par

k
ticles) of the body and their coordinates xk, yk, zk. Hence, the position of 
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point C (xC, yC, zC) gives the distribution of mass in the body or in any 
mechanical system, where mk and xk, yk, zk are the masses and coordinates 
of the system's respective points. 

The geometric point C whose coordinates are given by Eqs. (12.1) is 
called the centre of mass, or centre of inertia of a mechani

If the position of the centre of mass is defined by its radius vector rC, 
we c

cal system. 

an obtain from Eqs. (12.1) the following expression: 
1

C k k
k

m
M

= ∑r r . (12.2) 

where rk is the radius vector of particle k of the system. 
 

n 

mpletely the 
distribution of mass in a system. For if in the system in Fig. 12.2 the 
distance h of each 
increased by the same quantity, the 

hange, though the distribution of mass 
will
the system (all other conditions remaining 
the 

t of inertia, is introduced in 
dy (system) with respect to a 
tia) is defined as the quantity 
cles of the body (system) each 
 distance from the axis: 

3. Moment of inertia of a body about an axis. Radius of gyratio
 

The position of centre of mass does not characterise co

of two identical spheres A and B from the axis Oz is 

location of the centre of mass will not 
c

 change and influence the motion of 

same, the rotation about axis Oz will 
be slower). 

Accordingly, another characteristic of 
the distribution of mass, called the momen
mechanics. The moment of inertia of a bo
given axis Oz (or the axial moment of iner
equal to the sum of the masses of the parti
multiplied by the square of its perpendicular

2
z k k

k
J m h=∑ . 

Fig. 12.1 

(12.3) 

sum of 
the moments of inertia of all its parts with respect to the same axis. 

It follows from the definition that the moment of inertia of a body (or 
system) with respect to any axis is always positive. 

It will be shown further on that axial moment of inertia plays the same 
part in the rotational motion of a body as mass does in translational motion, 
i.e., moment of inertia is a measure of a body's inertia in rotational motion. 

By Eq. (12.3), the moment of inertia of a body is equal to the 
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For a materia
unit for the moment of inertia in the SI system is 1 kg m . 

rdinates xk, yk, zk. Then 
the m

l point located at a distance h from an axis, Jz = mh2. The 
2

In computing the axial moments of inertia the distances of the points 
from the axes can be expressed in terms of their coo

oments of inertia about the axes Oxyz will be given by the following 
equations: 

2 2 2 2 2 2( ), ( ), ( )x k k k y k k k z k k k
k k k

J m y z J m x z J m y x= + = + = +∑ ∑ ∑ . (12.4) 

The concept of the radius of gyration is often employed in 
calculations. The radius of gyration of a body with respect to an axis Oz is 
a linear quantity i  defined by the equation z

2
z z zJ J Mi= = . (12.5) 

where M is the mass of the body. 
It follows from the definition that geometrically the radius of gyration 

is equal to the distance from the axis Oz to a point, such that if t
the whole body were concentrated in it, the moment of inertia of the point 
wou

Eqs. (121.3) and (12.4) are valid fo
material points. I

 sum in Eq. (12.3) becomes an integral. 
Hen

he mass of 

ld be equal to the moment of inertia of the whole body. 
Knowing the radius of gyration, we can obtain the moment of inertia 

of a body from Eq. (12.5) and vice versa. 
r both rigid bodies and systems of 

n the case of a solid body, dividing it into elementary 
parts, we find that in the limit the

ce, taking into account that dm = ρdV, where ρ is the density and V the 
volume, we obtain: 

2 2

( ) ( )
z

V V

J h dm h dV= = ρ∫ ∫ . (12.6) 

Eq. (12.6) are useful in calculating the moments of inertia of 
homogeneous bodies of geometric shape. As in that case the density ρ is 
constant, it can be taken out of the integral sign. 

Let us determine the moments of inertia of some homogeneous bodies. 
(1) Thin homogeneous rod of length l and mass M: 

2

3z
MlJ = . (12.7) 

(2) Thin circular homogeneous ring of radius R and mass M: 
2

zJ MR= . (12.8) 
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(3) Circular homogeneous disc or cylinder of radius R and mass 
M: 

2

2z
MRJ = . (12.9) 

(4) Uniform rectangular lamina of mass M with sides of length a 
and b (axis x in coincident with side a, axis y with side b): 

2 2

,
3 3x y

Mb MaJ J= = . (12.10) 

(5) Unifo
z is c

rm right circular cone of mass M and base radius R (axis 
oincident with the axis of the cone): 

20.3zJ MR= . (12.11) 

(6) Unifo
coincident with a diameter): 

rm sphere of mass M and base radius R (axis z is 

20.4zJ MR= . (12.12) 

 
4. Moments of in

The parallel axis (Huygens') theorem 

f inertia of the same body with 
respect to differe
moment of inertia
with

Draw throug
body C arbitrary
arbitrary point O on axis Cx' axes Oxyz, so 
that Oy |
Denoting the dis
Oz by d, from Eqs. (12.4) 

But it is apparent from the drawing that for any point of the body 
xk = x'k – d, and yk = y'k. Substituting these expressions for xk and yk into the 

ertia of a body about parallel axes. 

 
In the most general case, the moments o

nt axes are different. Let us see how to determine the 
 of a body with respect to any axis if its moment of inertia 

 respect to a parallel axis through the 
body is known. 

h the centre of mass of a 
 axes Cx'y'z', and through an 

| Cy' and Oz || Cz' (Fig. 12.3). 
tance between axes Cz' and 

2 2

2 2

( ),

( ).

Oz k k k
k

Oz k k k
k

J m x y

J m x y′

= +

′ ′= +

∑

∑
 

Fig. 12.3 
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expr liers d2 and 2d outside the ession for JOz and taking the common multip
parentheses, we obtain: 

2 2 2( ) 2Oz k k k k k k
k k k

J m x y d m d m x′ ′ ′= + + −∑ ∑ ∑
The first summation in the right member of the equati

J , and the second to the m

. 

on is equal to 
Cz′ ass M of the body. Let us find the value of the 

third summation. From Eq. (12.1) we know that, for the coordinates of the 
centre of mass 

m x Mx′ ′=∑ . 

We finally obtain 

k k C
k

But since in our case point C is the origin, x'C = 0, and consequently 

0k k
k

m x′ =∑ . 

2JOz CzJ Md= + . (12.13) 

f inertia of the body with respect to a parallel axis through 
the centre of mass of the body plus the product of the mass of the body and 
the square of the distance between the two axes. 

It follows from Eq. (12.13) that J  > J ′. Consequently, of all the axes 
he one 

through the centre of mass. 
 

LECTURE 13 
THEOREM OF THE CHANGE IN THE KINETIC ENERGY OF A 

′

Eq. (12.13) expresses the parallel axis theorem enunciated by 
Huygens: The moment of inertia of a body with respect to any axis is equal 
to the moment o

Oz Cz
of same direction, the moment of inertia is least with respect to t

SYSTEM. 
1. The kinetic energy of a particle 

 
The kinetic energy of a particle is defined as a quantity equal to half 

the product of the mass of the particle and the square of its velocity 
2mυ

2
K = . (13.1) 

The units of measurement of this quantity are: 
a) In the SI system (
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kg m2/s2; 

(kgf s /m) (m /s )= 
 

2. Work done by a force. Power 
 

on of a 
force on a body in a given displacement, 
specifically th
change in the magnitude of the velocity of a 
movin

duce the concept of
elementary work done by a force in an 
infinit The elementary 
work done b efined as a 
scalar quantity 

. (13.2) 

where
al displacement of the 

ork as a characteristic 
a force which tends to change the magnitude of velocity. 

For if , only the component 
tion, will change the 
it either changes the 

ts nor ration) 
e of constrained motion, changes the pressure on the 

constraint. Co
as they say, fo n

Fig. 13.1 

(b) In the mkg(f)s system 
2 2 2 kgf m; 

The concept of work is introduced as a measure of the acti

at action which is represented by the 

g particle. 
First let us intro  

esimal displacement ds. 
y a force F (Fig. 13.1) is d

dA F dsτ=

 Fτ is the projection of the force on the tangent to the path in the 
direction of the displacement, and ds is an infinitesim
particle along that tangent. 

This definition corresponds to the concept of w
of that action of 

 force F is resolved into components Fτ and Fn
Fτ, which imparts the particle its tangential accelera
magnitude of the velocity. As for component Fn, 
direction of the velocity vector υ (gives the particle i
or, in the cas

mal accele

mponent Fn does not affect the magnitude of the velocity, or 
rce F  "does no work". 

Noting that Fτ = F cosα, we further obtain from Eq. (13.2): 
cosdA F ds= α . (13.3) 

Thus, the elementary work done by a force is equal to the product of 
the projection of that force on the direction of displacement of the particle 
and the infinitesimal displacement ds (Eq. 13.2) or, the elementary work 
done by a force is the product of the magnitude of that force, the 
infinitesimal displacement ds, and the cosine of the angle between the 
direction of the force and the direction of the displacement (Eq. 13.3). 
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If angle α is acute, the work is of positive sense. In particular, at α=0, 
the elementary work dA=Fds. 

If angle α is obtuse, the work is of negative sense. In particular, at 
α=180°, the elemen

If angle 
displa

υdt ds υ dt ds r
conce

allel to the coordinate 
axes. 

e by its components Fx, Fy, Fz in 
the displacem
only by component 
dy and

tary work dA= –Fds. 
α=90°, i.e., if a force is directed perpendicular to the 

cement, the elementary work done by the force is zero. 
The sign of the work has the following meaning: the work is positive 

when the tangential component of the force is pointed in the direction of 
the displacement, i.e., when the force accelerates the motion; the work is 
negative when the tangential component is pointed opposite the 
displacement, i.e., when the force retards the motion. 

As we know from kinematics, the vector of the elementary 
displacement of a particle dr= , and =| | , whence =|d |. Using the 

pt of the scalar product of two vectors employed in vector algebra, 
Eq. (13.3) can be represented in the form 

dA d= F r . (13.4) 
Consequently, the elementary work done by a force equals the scalar 

product of the force vector and the vector of the elementary displacement 
of its point of application. 

Lot us now find the analytical expression for elementary work. For 
this we resolve force F into components Fx, Fy, Fz par

The infinitesimal displacement ds is compounded of the 
displacements dx, dy, dz parallel to the coordinate axes, where x, y, z are the 
coordinates of point. The work done by force F in the displacement ds can 
be calculated as the sum of the work don

ents dx, dy, dz. But the work in the displacement dx is done 
F  and is equal to F dx. The work in the displacements x x

 dz is calculated similarly. Thus, we finally obtain 

x y zdA F dx F dy F dz= + + . (13.5) 

Eq. (13.5) gives the analytical expression of the elementary work 
done by a force.  

Eq. (13.5) can be obtained directly from (13.4) if the scalar product 
is expressed in terms of the projections of the vectors. Then, taking into 
account that the projections of the radius vector r of point M on the axes 
Oxyz are equal to its cartesian coordinates x, y, z, we obtain at once 
dA=Fxdx+Fydy+Fzdz. 
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The work done by a f
13.1) is calculated as the integral 

orce in any finite displacement M0M1 (see Fig. 
sum of the corresponding elementary 

works and is equal to 
1

0 1

0

( )

M

M M
M

A F dsτ= ∫ , (13.6) 

or 
1M

0 1

0

( ) ( )M M x y z
M

A F dx F dy F dz= + +∫ . (13.7) 

Thus, the work done by a force in any displacement M0M1 to the 
integral of the elementary wo

The limits of t
integration at points M0 and M1 (or, more exactly, the integral is taken 

ng the curve M0M1, i.e., it is curvilinear). 
If the quantity Fτ is constant (Fτ=const), then from Eq. (13.6), 

denoting the displacement M0M1 by t

1

rk taken along this displacement. 
he integral correspond to the values of the variables of 

alo

he symbol s1, we obtain: 

0 1( )M MA F sτ= . (13.8) 

), and in the 
mkg(f)s system, t

In particular, such a case is possible when the acting force is constant 
in magnitude and direction (F=const.) and the point of application is in 
rectilinear motion (Fig. 252). In this case Fτ=Fcosα=const, and the work 
done by the force  

0 1( ) 1 cosM M Fs= α . (13.9) 

The unit of work in the SI system is the joule (1J = lN m

A

he kgf m. 
Power. The term power is defined as the work done by a force in a 

unit of time (the time rate of doing work). If work is done at a constant rate, 
the power 

1

AW = , 
t

(13.10) 

where t1 ia the time in which the work A is done. In the general case, 
dA F dsW τ F
dt dt τ= = = υ . (13.11) 
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Thus
velocity. 

The unit of power in the SI system is the watt (1 W=1 J/s), and in the 
omly 

used is horsepower (hp), which is 
The work done by 

power and the time of work. This has given rise to the commonly used 
techni

into l

3. Examples of calculation of work 

ose a
coordinate system so that the axis Oz 
points vertically 
Px=0, P =0, P =-P. Substituting these 
expres

)

, power is product of the tangential component of a force by the 

mkg(f)s system, the kgf m/s. In engineering the unit of power comm
equal to 75 kgf m/s, or 736 W. 

a machine can be expressed as the product of its 

cal unit of work, the kilowatt-hour (1 kW h=3.6 106 J≈367100 kgf 
m). 

It can be seen from the equation W=Fτυ that if a motor has a given 
power W, the tractive force Fτ is inversely proportional to the velocity υ. 
That is why, for instance, on an upgrade or poor road an automobile goes 

ower gear, thereby reducing the speed and developing a greater 
tractive force with the same power. 

 

 
(1) Work done by gravity. Let a 

particle M subjected to the force of 
gravity P move from a point M0 (x0, y0, z0) 
to a point M1 (x1, yl, z1). Cho  

up (Fig. 13.2). Then 
y z

sions into Eq. (13.5) and taking into 
account that the integration variable is z, 
we obtain: 

1 1

0 1

0 0

( )

( ) 0
( )

( ) (
M z

M M
M z

1A P dz P dz P z z= − = − = −∫ ∫

If point M0 is higher than Ml then z
displacement of the particle; if M0 is belo
Finally we h

. (13.12) 

0–z1=h, where h is the vertical 
w Ml the z1– z0)=–h. 

ave: 
n z0–z1=–(

0 1( )M MA Ph= ± . (13.13) 

Thus, the work done by gravity is equal to the
magnitude of the force and the vertical displacement of the point to which it 
is applied, taken with the appropriate sign. The work is positive if the 
initial point is higher than the final one and negative if it is lower. 

Fig. 13.2 

 product of the 
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It follows from this that the work done by gravity does not depend on 
the path along which the point of its application moves. Forces possessing 
this property are called conservative forces. 

(2) Work D
horizontal plane and attach

weigh

force 

magni

one by an Elastic Force. Consider a weight M lying in a 
ed to the free end of a spring (Fig. 13.3). 

Let point O on the plane represent the position of the end of the 
spring when it is not in tension (AO=l0 is the length of the unextended 
spring) and let it be the origin of our 
coordinate system. Now if we draw the 

t from its position of equilibrium 
O, stretching the spring to length l, 
acting on the weight will be the elastic 

of the spring F directed towards 
O. According to Hooke's law, the 

Fig. 13.3 

tude of this force is proportional to the extension of the spring Δl=l–
l0. As in our case Δl=x, in magnitude 

F c l c x= Δ = . 

The factor c is called the stiffn
constant, and its dimension is [c] = kgf/
equal to the force required to extend the s

Let us find the work done by the e
the weight from position M0(x0) to positio
–cx, Fy=Fz=0, substituting these expressions into Eq. (13.7) we obtain: 

(13.14) 

ess of the spring, or the spring 
cm. Numerically, the stiffness c is 
pring by 1 cm. 
lastic forc placement of 
n M1(x1). As in this case Fx=–F= 

e in the dis

1 1( )M x

0 1( )
( )

(M M
M x

c

0 0

2 2
0 1) ( )

2
A cx dx c xdx x x= − = −∫ . (13.15) = −∫

In the obtained formula x0 is the initial extension of the spring Δlin, 
and x1 is the final extension Δlfin. Hence, 

0 1

2 2
( ) ( ) ( )

2M M in fin
cA l l⎡ ⎤= Δ − Δ⎣ ⎦ , (13.16) 

i.e., the work done by an elastic force is equal to half the product of the 
stiffness and the difference between the squares of the initial and final 
extensions (or compressions) of a spring. 

The work is positive if |Δlin| > |Δlfin|, i.e., when the end of the spring 
moves

ves away from the position of 
equilibrium. 

 towards the position of equilibrium, and negative when |Δlin| < |Δlfin|, 
i.e., when the end of the spring mo
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It can be proved that Eq. (13.16)
displacement of point M is not 

 holds for the case when the 
rectilinear. It follows, therefore, that the 

work done by the force F depends only on the quantities Δlin and Δlfin and 
does not depend on the actual path travelled by M. Consequently, an elastic 
force is also a conservative force. 

(3) Work Done by Friction. Consider a particle moving on a rough 
surface or a rough curve. The magnitude of the frictional force acting on 
the particle is fN, where f is the coefficient of friction and N is the normal 
reaction of the surface. Frictional force is directed opposite to the 
displacement of the particle, whence Ffr x=–fN, and from Eq. (13.6), 

0 1

2 2
( ) ( ) ( )

2M M in fin
cA l l⎡ ⎤= Δ − Δ⎣ ⎦ , (13.17) 

If the friction force is constant, then A=–Ffrs, where s is the length of 
the arc M M  along which the parti0 1 cle moves. 

Thus, the work done by kinetic friction is always negative. It depends 
on the length of the arc M0M1 and consequently friction is a non- 
conservative force. 

 
4. Theorem of the change in the kinetic energy of a particle 
 
Consider a particle of ma

positio

 fundamental law of dynamics. Projecting this equation 
on the tangent M  to the path of the particle in the direction of motion, we 
obtain

quation can be 
written in the form

ss m displaced by acting forces from a 
n M0 where its velocity is υ0 to a position M1 where its velocity is υ1. 
To obtain the required relation, consider the equation 

k
k

=∑Fa , (13.18) 

which expresses the

m

τ
: 

k
k

a Fτ τ=∑ . (13.19) m

The tangential acceleration in the left side of the e
 

d d ds da
dt ds dt dsτ

whence, we have: 

υ υ
= = = υ , (13.20) υ
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k
k

dm F . (13.21) 
ds τ
υ
υ =∑

en, notingthat Fkτds=dAk, where dAk is the elementary 
work done by the force Fk, w
change in kinetic energy in

Multiplying both sides of the equation by ds, bring m under the 
differential sign. Th

e obtain an expression of the theorem of the 
 differential form: 

2md
⎛ ⎞υ

=
2 k

k

dA⎜ ⎟
⎝ ⎠

∑ . (13.22) 

Integrating both parts in the limits of corresponding values of the 
variables at points M0 and Ml we finally obtain: 

0 1

2 2
1 0

( )2 2 M M
k

m m Aυ υ
− =∑ . (13.23) 

Eq. (13.23) states the theorem of the change in the kinetic energy 
of a particle in the 
particle in any displacement is equal to the algebraic sum of the work done 
by all 

THEOREM OF THE CH
SYS

final form: The change in the kinetic energy of a 

the forces acting on the particle in the same displacement. 
 

LECTURE 14 
ANGE IN THE KINETIC ENERGY OF A 
TEM (continuation). 

5. Kinetic energy of a system  
 
The kinetic energy of a system is defined as a scalar quantity T equal 

to the arithmetical sum of the kinetic energies of all the particles of the 
system: 

2

2
k k

k

K =∑ . (13.24)m υ  

Kinetic energy e translational and 
rotational motion of a system  of the change in 
kinetic

is a characteristic of both th
, which is why the theorem

 energy is so frequently used in problem solutions.  
If a system consists of several bodies, its kinetic energy is, evidently, 

equal to the sum of the kinetic energies of all the bodies: 

k
k

K K=∑ . (13.25) 
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Let us develop the equations for computing the kinetic energy of a 
body in different types of motion. 

(1) Translational Motion. In this case all the points of a body have 
the sa

 gives: 
me velocity, which is equal to the velocity of the centre of mass. 

Therefore, for any point k we have υk=υC, and Eq. (13.24)
2

21k Cm mυ ⎛ ⎞
= υ∑ , 

2 2trans k CK = ⎜ ⎟
⎝ ⎠

∑
k k

or 
2

21
2 2
k C

trans C
k

mK Mυ
= = υ∑ , (13.26) 

Thus, in translational motion, the kinetic energy of a body is equal to 
half the product of the body's mass and the square of the velocity of the 
centre of mass. The value of K does not depend on the direction of motion. 

(2) Rotational Motion. The velocity of any point of a body rotating 
ut an axis Oz is υk=ωhk, where hk is the distance of the point from the 

axis of rotation and co is the a
expression into Eq. (13.24) an
the parentheses, we obtain: 

abo
ngular velocity of the body. Substituting this 
d taking the common multipliers outside of 

2 2
2 21

2 2
k k

rotation k k
k k

m hK m hω ⎛ ⎞
= = ω⎜ ⎟

⎝ ⎠
∑ ∑ , 

The term in the parentheses is the moment of inertia of the body with 
respect to axis z. Thus, we finally obtain: 

21
2rotation zK J= ω , (13.27) 

i.e., in rotational motion, the kinetic energy of a body is equal to half the 
product of the body's moment of inertia w h respect to the axis of rotation 
and the square of its angular velocity. The value of K does not depend on 
the dir

 the velocities of all the points of 
a body are at any instant directed as if the body were rotating about an axis 
perpendicular to the 
centre of zero velocity C  . Hence, by Eq. (13.27), 

it

ection of the rotation. 
(3) Plane Motion. In plane motion,

plane of motion and passing through the instantaneous 
V

21
plane CK J= ω , (13.28) 

2 V
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where JCv is the moment of inertia of the body with respect to the 
instantaneous axis of rotation, and co is the angular velocity of the body. 

he parallel axis theorem 
JCv=JC+Md , where d=PC. Substituting this expression for J  into Eq. 
(13.28) and taking in
zero velocity and therefore ωd=ωPC=υ , where υ  is the velocity of the 

The quantity JCv in Eq. (13.27) is variable, as the position of the 
centre CV continuously changes with the motion of the body. Let us 
introduce instead of JCv a constant moment of inertia JC with respect to an 
axis through the centre of mass C of the body. By t

2
Cv

to account that point CV is the instantaneous centre of 
C C

centre of mass, we obtain finally: 

2 21 1
2 2plane C CM J= υ + ω , (13.29) 

Thus, in plane motion, the kinetic energy of a body is equal to the 
kinetic energy of translation of the centre of mass plus the kinetic energy of 
rotation relative to the centre of mass. 

 
6. Some case of computation of work 

 

K

(1) Work done by forces applied to a
rotating body. The elemen
force F applied to the body in Fig. 13.4 will be  

f rotation of 
the body. 

But it is ev
call the quantity Mz= mz(F) the turning moment, or 
torque

(13.30) 

i.e., the elemental work in this case is equal to the product of the torque and 
the elemental angle of rotation. Eq. (13.30) is valid when several forces are 

 
tal work done by the 

dA F ds F hdτ τ= = ϕ , 

since ds=hdφ, where dφ is the angle o

Fig. 13.4 ident that Fτh=mz(F). We shall 

. Thus we obtain: 

zdA M d= ϕ , 

acting if it is assume that  

( )z z k
k

m=∑ F . 

The work done in a turn through a finite angle 

M

φ1 will be 
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1

0
zA M d

ϕ

= ϕ∫ , (13.31) 

and, for a constant torque (Mz=const.), 
. (13.32) 

If acting on a body is a force couple lying in a plane normal to Oz, 
then, evidently, 
couple. 

ined in this case. From Eq. (13.30) 
we find: 

1zA M= ϕ

 

Mz in Eqs. (13.30)-(13.32) will denote the moment of that 

Let us see how power is determ

z
z

dA M dW Mϕ
= = = ω. 

the product of the torque and angular velocity of the body. For the 
same 

 Work done by frictional forces acting on a rolling body. A 
wheel of radius R (Fig. 13.5) rolling without slipping on a plane (surface) is 
subjected to the action of a frictional force Ffr, 
which prevents the slipping of the point of contact 
B on t

dsB=υ

ero in any displacement 
y the normal reaction N 

e and force N applied 

 of the surfaces (Fig. 
ple (N, P) with a moment M=kN, s the 

coeffi and taking into account 

dt dt
Thus, the power developed by forces acting on a rotating body is 

equal to 
power, the torque increases as the angular velocity decreases. 
(2)

he surface. The elemental work done by this 
force is dA=–FtrdsB. But point B is the 
instantaneous centre of velocity, and υB=0. As 

Bdt, dsB=0, and for every elemental 
displacement dA=0. 

Thus, in rolling without slipping, the work 
done by the frictional force preventing slipping is z
of the body. For the same reason, the work done b
is also zero, assuming the body to be non-deformabl
at point B, as shown in Fig. 13.5a. 

The resistance to rolling due to deformation
13.5b) creates a cou

Fig. 13.5 

where k i
cient of rolling friction. Then by Eq. (13.30) 

that the angle of rotation of a rolling wheel is  

Cdsd
R

ϕ = , 

we obtain: 
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roll C
kdA kNd Nds
R

= − ϕ = − , (13.33) 

where dsC is the elemental displacement of the centre C of the wheel. 
If N=const, then the total work done by the forces resisting rolling 

will be 

1roll C
kA kN Ns
R

= − ϕ = − . (13.34) 

As the quantity k/R i
approximation, be neglected as

he theorem proved in §4 is valid for any point of a system. 
Therefore, if we take any pa
system, we have for this particle 

s small, rolling friction can, in the first 
 compared with other resisting forces. 

 
7. Theorem of the change in the kinetic energy of a system 

 
T

rticle of mass mk and velocity υk belonging to a 

2

2
e ik k
k k

md dA dA
⎛ ⎞υ

= +⎜ ⎟
⎠

, 
⎝

where l and 
internal forces acting on the particle. 

dAe
k and dAi

k are the elementary work done by the externa

If we write similar equations for all the particles of a system and add 
them, we obtain: 

2m⎛ ⎞υ
2

e ik k
k k

k k k

d dA dA= +⎜ ⎟
⎝ ⎠
∑ ∑ ∑ , 

or 
e i
k kdT dA dA= +∑ ∑ . (13.35) 

k k

3.35) states the theorem of the change in the kinetic 
energy of a system in differential form. Integrating both parts of the 
equation in the limits corresponding to the displacement of the system from 
some initial position where the kinetic energy is T0 to a position where it is 

k k
T T A A− = +∑ ∑

Equation (1

T1, we obtain: 

1 0
e i
k k . (13.36) 
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This equation states the theorem of the change in kinetic energy in 
final form: The change in the kinetic energy of a system during any 
displacement is equal to the sum of the work done by all the external and 
internal forces acting on the system in that displacement. 

(1) Non-deformable systems. A non-deformable system is defined 
as one in which the dist
internal forces does not c
cases of such system

m the laws of kinematics that the 
equently of the displacements ds1 
equal, i.e., B1B'1=B2B'2. Then the 
21 will be equal in magnitude and 

e zero. This holds for all internal 

sum of the work done by all the 

ance between the points of application of the 
hange during the motion of the system. Special 

s are a rigid body and an inextensible string. 
Let two points B1 and B2 of a 

non-deformable system (Fig. 13.6) be 
acting on each other with forces Fi

12 
and Fi  (Fi =–Fi  and let their 21 12 21
velocities at some instant be υ1 and υ2. 
Their displacements in a time interval 
dt will be ds1=υ1dt and ds1=υ1dt 
directed along vectors υ  and υ . But as 1 2
line B1B2 is non-deformable, it follows fro
projections of vectors υ1 and υ2, and cons
and ds2, on the direction of B1B2 will be 
elemental work done by forces Fi

12 and Fi

opposite in sense, and their sum will b
forces in any displacement of a system. 

We conclude from this that the 
internal forces of a non-deformable system is zero, and Eqs. (13.35) or 
(13.36) take the form 

e
k

k
dT dA=∑    or   1 0

e
k

k
T T A− =∑ . (13.37) 

(2) Systems with ideal constraints. Consider a system with 
con¬straints that do not change with t

Fig. 13.6 

ime. Dividing all the external and 
intern

rdA , 

where dAa  is the elementary work done by the external and internal forces 
acting

al forces acting on the particles of the system into active forces and 
the reactions of the constraints, Eq. (13.35) can be written in the form: 

adT dA= +∑ ∑k k
k k

k
 on the k-th particle of the system, and dAr

k is the elementary work 
done by the reactions of the external and internal constraints acting on that 
particle. 

 76



We see that the change in the kinetic energy of the system depends 
on the work done by both the acting forces and the reactions of the 

 
It was es

curve), for which friction can be neglected, the work done by the reaction 
N in t

e., the tangential component of the reaction) is zero. Also, the 
work 

constraints. However, we can introduce the concept of "ideal" mechanical 
systems in which constraints do not affect the change in kinetic energy in 
the motion of the system. Such constraints should, evidently, satisfy the 
condition: 

0r
k

k
dA = . (13.38) 

If for constraints that do not change with time the sum of the work 
done by all the reactions in an elementary displacement of a system is zero, 
such constraints are called ideal. Here are some known examples of ideal 
constraints.

∑

tablished that if a constraint is a fixed smooth surface (or 

he motion of a body along that surface (curve) is zero. Then, it was 
shown that, neglecting deformation, if a body rolls without slipping on a 
rough surface, the work done by the normal reaction N and the force of 
friction F (i.

done by the reaction R of a hinge is, neglecting friction, zero, as in 
any displacement of the system the point of application of force R is fixed. 
Finally, if the material particles B1 and B2 in Fig. 13.6 are assumed to be 
connected by a rigid rod B1B2, the forces Fi

12 and Fi
21 will be the reactions 

of the constraint; the work of each of these reactions in the displacement of 
the system is not zero, but their sum, as shown, is zero. Thus, all the 
mentioned constraints can, with the assumptions made, be regarded as 
ideal. 

In the case of a mechanical system subject solely to ideal constraints 
that do not change with time we obviously have: 

a
k

k
dT dA=∑    or   1 0

a
k

k
T T A− =∑ . (13.39) 

Thus, the change in the kinetic energy of a system with ideal 
constraints that do not change with time is, in any displacement, equal to 
the sum of the work done in that displacement by the active external and 
internal forces. 

All the foregoing theorems ma
forces from the equations of motion, but all the external forces, including 
the im

de it possible to exclude the internal 

mediately unknown reactions of the external constraints, entered the 
equations. The theorem of the change in kinetic energy is useful because in 
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the case of ideal constraints that do not change with time it makes it 
possible to exclude all the immediately unknown reactions of the 
constr

) ( )M

aints from the equations of motion. 
 

8. Conservative force field and force function  
 
The work done in a displacement M1M2 by a force F applied at a 

point M of a body is computed according to Eq. (13.7): 
1 1( ) ( )M M

0 1

0 0( ) ( )
x y z

M M
(MA dA F dx F dy F dz= = + +∫ ∫ . (13.40) 

 the location of the 
point, i.e., on its x, y, z coordinates. Such forces are said to form
field, or field of force. A force field is defined 
any article experiences a force of certain magnitude and direction. 
Exam

As pointed out in §2, the integral on the right can be evaluated 
without knowledge of the law of motion involved (i.e., of the dependence 
of x, y, z on time) only if the force depends solely on

 a force 
as a region of space in which 

ples are planetary or stellar gravitational fields. As any force can be 
defined by its projections on a set of coordinate axes, a force field can be 
described by the equations: 

1 2 3( , , ), ( , , ), ( , , )x y zF x y z F x y z F x y z=Φ =Φ =Φ . (13.41) 

But in the most general case, to compute the work done by such 
forces, in Eq. (13.40) it is necessary to go over to one variable in the 
integrand; for example, one must know the dependencies y=f1(x) and 
z=f2(x), which give the spatial equation of the curve that is the path of 
particle M. Consequently, in the most general case the
forces constituting a force field depends on the type of path of the point of 
applic

 work done by the 

ation of the relevant force. 
However, if the integrand in Eq. (13.40), which represents the 

elementary work done by force F, is the full differential of a function 
U(x,y,z), i.e., if 

( , , )dA dU x y z= ,   or   ( , , )x y zF dx F dy F dz dU x y z+ + = , (13.42) 

the work A can be computed without knowing the path of point M. 

 force function is called a conservative force field, and the 

The function U of the coordinates x, y, z, the differential of which 
equals the elementary work, is called a force function. A force field for 
which there is a
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forces acting in that field are called conservative forces. We shall regard a 
force function as a unique function of coordinates. 

Substituting the expression for dA from Eq. (13.42) into Eq. (13.40), 
we obtain: 

1

0 1

0

( )

( ) 2 1
( )

( , , )
M

M M
M

A dU x y z U U= = −∫ , (13.43) 

where
 points M1 and M2 of the field, respectively. Consequently, the 

work done by a conservative force acting on a moving particle equals the 
difference between the values of the
initial points of the displacement and does not depend on the particle'

U

 U1=U(x1,yl,z1) and U2=U(x2,y2,z2) are the values of the force 
functions at

 force function at the terminal and 
s path. 

In a displacement along a closed path 2=U1, and the work done by a 
conservative force is zero. 

The basic property of a conservative force field is that the work done 
by its forces acting on a moving material particle depends only on the 
particle's initial and final positions and does not depend on its path 
followed or the law of motion. 

When the work done by a force depends on the path or law of motion 
of the point at which it is applied, the force is said to be nonconservative, or 
dissipative. Examples are friction and the resistance of a medium. 

If the relationship (13.42) is found to apply, the force function can be 
determined from the equation 

U dA C= +∫ ,   or   ( )x y zU F dx F dy F dz C= + + +∫ , (13.44) 

where C is a constant having any value [it is apparent from Eq. (13.43) that 
work does not depend on C]. However, it is conventionally assumed that at 
some point 0, called the "zero point", U =0, and C is determined on that 
basis. 

O

 

osition in the force field. In order to compare different "capacities 
for doing work", we must agree on the 
we ass me the capacity to d e choice of the zero point, 
as of any initial point or origin, is arbitrary). The potential energy of a 
particle in any configuration M is defined as the scalar quantity V equal to 

9. Potential energy 
 
For conservative forces we can introduce the concept of potential 

energy as a measure of the capacity of a particle for doing work by virtue 
of its p

choice of a zero point 0, in which 
o work to be zero (thu
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the work done on the particle by the forces of a field in the passage from 
configuration M to the zero configuration: 

( )MOV A= . 

It follows from the definition that potential energy is dependent on 
the coordinates of the particle M, i.e., V=V(x,y,z). 

Assuming that the zero points of the functions V(x,y,z) and U(x,y,z) 
coincide, we have U0=0 and, by Eq. (13.43), A(MO)=U0–U=–U, where U is 
the force function at point M of the field; whence, 

− , 

i.e., th
 with the opposite sign. 

 by a conservative force 
we can use instead of Eq. (13.43) the formula 

( , , ) ( , , )V x y z U x y z=

e potential energy at any point of a force field is equal to the 
magnitude of the force function at that point taken

It is thus apparent that in investigating the properties of a 
conservative force field we can replace the force function with potential 
energy. In particular, in computing the work done

0 1( ) 1 2M MA V V= − , (13.45) 

Thus, the work done by a conservative force is equal to the 
differe

chanical energy 
 
Let us assume that all the extern

system

k k

nce between a moving particle's potential energy in its initial and 
final positions. 

 
10. The law of conservation of me

al and internal forces acting on a 
 are conservative forces. Then, for any particle belonging to the 

system, the work done by the applied forces is 

k 0 1A V V= − , 

and for all the external and internal forces 

0 1 0 1k k k
k k k

A V V V V= − = −∑ ∑ , 

where V0(1) is the potential energy of the whole system. 
Substituting this expression for work into Eq. (13.36), we obtain: 

∑

1 0 0 1 1 1 0 0

Thus, in the motion of a system subjected to the action of only 

T T V V− = −    or   . 

conservative forces, the sum of the kinetic and potential energies of the 

T V V T const+ = + =
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system remains constant for any configuration. This is the law of 
conservation of mechanical energy, which is a particular case of the 

antity T+V is called 
the tot

If the acting forces include dissipative forces, such as friction, the 
total mechanical energy of the system will decrease during its motion due 
to tran

 

S OF A 

, belonging to the system, let us denote the resultant of all the 
xternal forces acting on the particle (both active forces and the forces of 

reaction) by the symbol F(e)
k, and the resultant of all the internal forces by 

F  
dynamics, 

a

................
e i

n n n nm
⎪

= +F Fa

re called the differential equations of motion of a 
system in vector form. In the most general case the forces in the right side 
of the equations depend on time, coordinates of the particles of the system, 
and velocities. 

general physical law of conservation of energy. The qu
al mechanical energy of the system. 

sformation into other forms of energy, e.g., thermal energy. 
The whole meaning of the foregoing law becomes apparent when it 

is considered in connection with the general physical law of conservation 
of energy. However, in solving purely mechanical problems, the theorem of 
the change in the kinetic energy of a system can always be immediately 
applied 

LECTURE 15 
THEOREM OF THE MOTION OF THE CENTER OF MAS

SYSTEM 
1. The differential equations of motion of a system 

 
Suppose we have a system of n particles. Choosing any particle of 

mass mk
e

(e)
i. If the particle has an acceleration ak, then, by the fundamental law of

( ) ( )e i+F F . k k k km =

Similar results are obtained for any other particle, whence, for the 
whole system, we have: 

( ) ( )
1 1 1 1

( ) ( )
2 2 2 2

,

,
...........

e i

e i

m

m

⎫= +
⎪

= + ⎪
⎬

F F

F F

a

a
 (15.1) 

( ) ( ).⎪⎭
These equations, from which we can develop the law of motion of any 

particle of the system, a
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By projecting Eqs. (15.1) on coordinate axes, we can obtain the 
differential equations of motion of a given system in terms of the 
projections on these axe

The complete solution of the principal problem of dynamics for a 
system would be to develop the equation of motion for each particle of the 
system from the given forces by integrating the corresponding differential 
equa

 system, without investigating the motion of each particle. 
Thes

 of Eqs. (15.1) or their corollaries will be to 
deve

m M=∑ r

s. 

tions. For two reasons, however, this solution is not usually employed. 
Firstly, the solution is too involved and will almost inevitably lead into 
insurmountable mathematical difficulties. Secondly, in solving problems of 
mechanics it is usually sufficient to know certain overall characteristics of 
the motion of a

e overall characteristics can be found with the help of the general 
theorems of system dynamics, which we shall now study. 

The main application
lop the respective general theorems. 

 
2. Theorem of motion of centre of mass 

 
In many cases the nature of the motion of a system (especially of a 

rigid body) is completely described by the law of motion of its centre of 
mass. To develop this law, let us take the equations of motion of a system 
(15.1) and add separately their left and right sides. We obtain: 

( ) ( )e i
k k k km = +∑ ∑ ∑F Fa . (15.2) 

k k k

Let us transform the left side of the equation. For the radius vector of 
the centre of mass we have, from Eq. (12.2), 

Cr . k k
k

Taking the second derivative of both sides of this equation with respect 
to time, and noting that the derivative of a sum equals the sum of the 
derivatives, we find that 

2 2

2
k

k
k

d dm M
dt dt

=∑ r
2
Cr , 

or 

(15.3) k k C
k

m M=∑ a a , 
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whe

), we obtain finally: 

. (15.4) 

Eq. (15.4) states the theorem of the motion of the centre of mass of a 
tem. Its form coincides with that of the equation of motion of a particle 

of mass m = M whe
formulate the theorem of the motion of the centre of mass as follows: 

Projecting both sides of Eq. (15.4) on 

re aC is the acceleration of the centre of mass of the system. As the 
internal forces of a system is equal zero by substituting all the developed 
expressions into Eq. (15.2

( )e
k k k

k k
m =∑ ∑Fa

sys
re the acting forces are equal to F(e)

k. We can therefore 

The centre of mass of a system moves as if it were a particle of mass equal 
to the mass of the whole system to which are applied all the external forces 
acting on the system. 

the coordinate axes, we obtain: 
2 2 2

( ) ( ) ( ), ,e e eC C Cd x d y d zM 2 2 2kx ky kz
k k k

F M F M F= = =∑ ∑ ∑ . (15.5) 

of m
In particular, if a body is in translational motion, its motion is 

completely specified by the motion of its centre of mass, and c
a body in translatory motion can always be treated as a particle of mass 
equa

ass is sufficient to specify 
the p

окуп-
ност

dt dt dt

These are the differential equations of motion of the centre of mass in 
terms of the projections on the coordinate axes. 

The theorem is valuable for the following reasons: 
(1) It justifies the use of the methods of particle dynamics. It follows 

from Eqs. (15.5) that the solutions developed on the assumption that a 
given body is equivalent to a particle define the law of motion of the centre 

ass of that body. Thus, these solutions have a concrete meaning. 

onsequently, 

l to the mass of the body. In all other cases, a body can be treated as a 
particle only when the position of its centre of m

osition of the body 
(2) The theorem makes it possible, in developing the equation of 

motion for the centre of mass of any system, to ignore all unknown internal 
forces. This is of special practical value. 

Поскольку механическая система, это прежде всего сов
ь материальных точек, то тогда количество движения системы 

точек − сумма количеств движения отдельных ее частей 
 

3. The law of conservation of motion of centre of mass 
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The following important corollaries arise from the theorem of the 
motion of centre of mass: 

(1) Let the sum of the external forces acting on a system be zero: 

C C
T u  is zero, 

the centre of mass of that system
mag

ass. 

zero, but let the sum of their projections on one of the coordinate axes (axis 
x, for instance) be zero: 

( ) 0e
k

k
=∑F . 

It follows, then, from Eq. (15.4) that a  = 0 or υ  = const. 
h s, if the sum of all the external forces acting on a system

 moves with velocity of constant 
nitude and direction, i.e., uniformly and rectilinearly. In particular, if 

the centre of mass was initially at rest, it will remain at rest. The action of 
the internal forces, we see, does not affect the motion of the centre of m

(2) Let the sum of the external forces acting on a system be other than 

( )e 0kx
k

F =∑ . 

The first of Eqs. (15.5) then gives 
2

2 0 or constC C
Cx

d x dx
dt dt

= = υ = . 

Thus, if the sum of the projections on an axis of all the external forces 
acting on a system is zero, the projection of the velocity of the centre of 
mass of the system on that axis is a constant quantity. In particular, if at the 
initial moment  = 0, it will remain zero at any subsequent instant, i.e., 
the centre of mass of the system will not move along axis x (xC = const.). 

e law of conservation of motion of the 
centre of mass of a system. 

 
4. Linear momentum of a system  

 that, irrespective of the velocities of 
the pa ticles (provid entum vector can 

υCx

The above results express th

 
The linear momentum, or simply the momentum, of a system is defined 

as the vector quantity Q equal to the geometric sum (the principal vector) 
of the momenta of all the particles of the system: 

k k
k

m=∑Q υ . (15.6) 

It can be seen from the diagram
r ed that they are not parallel) the mom
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take any value, or even be zero when the polygon constructed with the 
vect

uch more convenient to 
compute Q and a

m M=∑ r r . 

ors mkυk as its sides is closed. Consequently, the quantity Q does not 
characterise the motion of the system completely. 

Let us develop a formula with which it is m
lso to explain its meaning. It follows from Eq. (12.2) that 

k k C
k

Differentiating both sides with respect to time, we obtain: 

ork C
k k k C

k k

d dm M m M
dt dt

= =∑ ∑r r υ υ . 

whence we find that 

CM=Q υ . (15.7) 

i.e., the momentum of a system is equal to the product of the mass of the 
who equation is 
espe ies. 

It follows from Eq. (15.7) that if the mo n of a body (or a system) is 
such that the centre of mass remains motionless, the momentum of the 

omentum of a body rotating about a fixed axis 
ass is zero. 

If, on the

From ces the last summation is zero. 
Furthermore, 

le system and the velocity of its centre of mass. This 
cially convenient in computing the momentum of rigid bod

tio

body is zero. Thus, the m
through its centre of m

 other hand, a body is in relative motion, the quantity Q will 
not characterise the rotational component of the motion about the centre of 
mass. Thus, for a rolling wheel, Q = MυC, regardless of how the wheel 
rotates about its centre of mass C. 

We see, therefore, that momentum characterises only the translatory 
motion of a system, which is why it is often called linear momentum. 

 
 

5. Linear momentum of a system  
 
Consider a system of n particles. Writing the differential equations of 

motion (15.1) for this system and adding them, we obtain: 
( ) ( )e i

k k k k
k k k

m = +∑ ∑ ∑F Fa . 

 the property of internal for
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k k k k
k k

m m
dt dt

= =∑ ∑ υa , d dQ

and we finally have 

( )e
k

kdt

Eq. (15.8)

d
=∑Q F . (15.8) 

 states the theorem of the change in the linear momentum 
of a system in differential form: The derivative of the linear momentum of 
a system with respect to time is equal to the geometrical sum of all the 
external forces acting on the system. 

ctions on cartesian axes we have In terms of proje

( ) ( ) ( ), ,y e ez
ky kz

dQ dQex
kx

k k k

dQ F F F= =∑ ∑ . (15.9) 
dt dt dt

=∑

k

or 

as th
Eq. (15.10) states the theorem of the change in the linear 

momentum of a system in integral form: The change in the linear 
momentum of a system during any time interval is equal to the sum of the 

ulses of the external forces acting on the body during the same interval 
 

In terms of proje

⎪⎭

Let us develop another expression for the theorem. Let the momentum 
of a system be Q0 at time t = 0, and at time t1 let it be Q1. 

Multiplying both sides of Eq. (15.8) by dt and integrating, we obtain: 
1

( )
1 0

t
e

k dt− =∑∫Q Q F , 
0

( )
1 0

e
k

k
− =∑Q Q S , (15.10) 

e integrals to the right give the impulses of the external forces. 

imp
of time.

ctions on cartesian axes we have 

( ) ,eQ Q S ⎫
− = ⎪∑1 0

( )
1 0

( )
1 0

,

.

x x kx
k

e
y y ky

k

e
z z kz

Q Q S

Q Q S

⎪⎪− = ⎬
⎪
⎪− =

∑

∑

, (15.11) 

k
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Consequently, the theorem of the motion of centre of mass and the 
theorem of the change in the momentum of a system are, in effect, two 
forms of the same theorem. Whenever the motion of a rigid body (or 
system of bodies) is being investigated, both theorems may be used, though 
Eq. (15.7) is usually mor

For a continuous medium (a fluid), however, the concept of centre of 
mass of the whole system is virtually meaningless, and the theorem of the 
change in the momentum of a system is used in the solution of such 
prob

It follows from  Q  
of all the ex tum vector 
of the system

kx
k

F =∑

at internal forces are incapable of 
changing the total momentum of a system. 
 

e convenient. 

lems. This theorem is also very useful in investigating the theory of 
impact  and jet propulsion. 

The practical value of the theorem is that it enables us to exclude from 
consideration the immediately unknown internal forces (for instance, the 
reciprocal forces acting between the particles of a liquid). 

 
6. The law of conservation of linear momentum  

 
The following important corollaries arise from the theorem of the 

change in the momentum of a system: 
(1) Let the sum of all the external forces acting on a system be zero: 

( ) 0e
k

k
=∑F . 

 Eq. (15.8) that in this case = const. Thus, if the sum
ternal forces acting on a system is zero, the momen 
 is constant in magnitude and direction. 

(2) Let the external forces acting on a system be such that the sum of 
their projections on any axis Ox is zero: 

( )e 0 . 

It follows from Eqs. (15.9) that in this case Qx = const. Thus, if the 
sum of the projections on any axis of all the external forces acting on a 
system is zero, the projection of the momentum of that system on that axis 
is a constant quantity. 

These results express the law of conservation of the linear momentum 
of a system. It follows from the above th

LECTURE 16 
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THEOREM OF THE CHANGE IN THE ANGULAR MOMENTUM 
OF A SYSTEM 

1

Often, in analysing the motion of a particle, it is necessary to consider 
the change not in the vector its 

. Theorem of the change in the angular momentum of a particle  
(the principle of moments) 

 

mυ itself but in 
moment. The moment of the vector mυ with 
respect to any centre O or a y xis z is denoted b
the symbol m0(mυ) or mz(mυ) and is called the 
moment of momentum
with respect to that centre or axis. The moment 
of v

. or angular momentum 

ector mυ is calculated in the same way as the 
moment of a force. Vector mυ is considered to 
be applied to the moving particle. In magnitude 
|m0(mυ)|=mυh, where h is the perpendicular 
distance from O to the position line of the vector mυ (see Fig. 16.1). 

(1) Principle of moments about an axis. Consider a particle of mass 
m moving under the action of a force F. Let us establish the dependence 
between the moments of the vectors mυ and F with respect to any fixed 
axis z: 

( )z y xm xF yF= −F . (16.1) 

Similarly, form mz(mυ), and taking m out of the parentheses, we have: 
( ) ( )z y xm m m x y= υ − υυ . (16.2) 

Differentiating this equation with respect to time, we obtain: 

[ ]( ) y x
z

d
m m m

dt
υ⎛ ⎞

y x
x dy dmx my

dt dt dt dt
d d υ⎛ ⎞= ⎜

⎝ ⎠
υ − υ + −⎟ ⎜ ⎟

⎝ ⎠
υ . 

The first member in the right-hand side of the equation is zero. From 
Eq. (16.1), the second m
fund

ember is equal to mz(F), since, from the 
amental law of dynamics, 

,y x
y x

d dm F m
dt dt
υ υ

= = F . 

Finally, we have: 

Fig. 16.1 
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[ ]( ) ( )z z
d m m m
dt

=υ F . (16.3) 

This equation states the principle of moments about an axis: The 
derivative of the angular momentum oj a particle about any axis with 
respect to time is equal to the moment of the acting force about the same 
axis. 

From Eq. (16.3) it follows that if mz(F)=0, then mz(mυ)=const, i.e. if 
the moment of the ac
momentum of this parti
direc

ting force about an axis is zero, the angular 
cle about this axis is constant in magnitude and 

tion. 
(2) Principle of moments about a centre. Let us find for a particle 

moving under the action of a force F (Fig. 16.1) the relation between the 
moments of vectors mυ and F with respect to any fixed centre O. It was 
shown early  

( )O = ×m F r F . 

Similarly, 
( )O m m= ×m υ r υ . 

Vector m0(F) is normal to the plane through O and vector F, while 
vector m0(mυ) is normal to the plane through O and vector mυ. 
Differentiating the expression m0(mυ) with respect to time, we obtain: 

[ ] ( ) (d d d )m m m m
dt dt

⎛ ⎞ ⎛ ⎞× + × = × + ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

υυ r υ υ r a . m
dt

× =r υ r

But υ×mυ= 0, as the vector product of two parallel vectors, and 
ma=F. Hence, 

[ ]d m
dt

× = ×r υ r F , (16.4) 

or 

[ ] ( )Om
dt

× =r υ m F . (16.5) d

This is the principle of moments about a centre: The derivative of 
the angular momentum of a particle about any fixed centre with respect to 
time is equal to the moment of the force acting on the particle about the 
same centre. An analogous theorem is true for the moments of vector mυ 
and force F with respect to any axis z, which is evident if we project both 
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sides of Eq. (16.5) on tha
mathematical statement of
in E

t axis. This was proved directly in item (1). The 
 the theorem of moments about an axis is given 

q. (16.3) above. 
From Eq. (16.5) it follows that if m0(F)=0, then m0(mυ)=const., i.e., if 

the moment of the acting force relative to a centre is zero, the angular 
momentum of this particle about the same centre is constant in magnitude 
and direction. This result is of great importance in the case of motion under 
the action of a central force. 

 
2. Total angular momentum of a system 

 
The total angular momentum of a system with respect to a centre O 

is defined as the quantity KO equal to the geometrical sum of the angular 
momenta of all the particles of the system with respect to that centre. 

( )O O k km=∑K m υ . 
k

(16.6) 

The angular ach of three 
rectangular coordinate axes are found similarly: 

 momenta of a system with respect to e

( ), ( ), ( )x x k k y y k k z z k k
k k k

K m m K m m K m m= = =∑ ∑ ∑υ υ υ . (16.7) 

Kx, Ky, and Kz are the respective projections of vector K  on the 
coordinate axes. 

Just as the momentum of a system is a 
charac

tic of 
its rotational motion. 

To understand the physical meaning of KO and 
obtain

z, i.e., the angular 
f rotation. 
t a distance hk from 
υk)=mkυkhk=mkωhk

2. 
e parentheses, we 

O

teristic of its translational motion, the total 
angular momentum of a system is a characteris

 the formulas necessary for problem solutions, 
let us compute the angular momentum of a body 
rotating about a fixed axis (Fig. 16.2). As usual, we 
shall determine vector KO in terms of its projections 
Kx, Ky, and Kz. 

First, let us find the formula for determining K
mome

Fig. 16.2 

ntum of a rotating body with respect to the axis o
The linear velocity of any particle of the body a

the axis is ωhk. Consequently, for that particle mz(mk
Then, taking the common multiplier ω outside of th
obtain for the whole body: 
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2( )z z k k k k
k k

m m m h= = ω⎜ ⎟
⎝ ⎠

∑ ∑υ . ⎛ ⎞K

The quantity in the parentheses is the moment of inertia of the body 
with respect to axis z. We finally obtain: 

z zK J= ω. (16.8) 

Thus, the angular momentum of a rotating body with respect to the 
axis of rotation is equal to the product of the moment of inertia of the body 
and its angular velocity. 

, If a system consists of several bodies rotating about the same axis
then, apparently, 

z 1 1 2 2zK J= ω

n) and its angular velocity. 
Let us now compute the qu

of the

z nz nJ J+ ω + ω… . (16.9) 

The analogy between linear momentum of a system and angular 
momentum will be readily noticed: the momentum of a body is the product 
of its mass (the quantity characterising the body's inertia in translational 
motion) and its velocity; the angular momentum of a body is equal to the 
product of its moment of inertia (the quantity characterising a body's inertia 
in rotational motio

antities Kx and Ky. As in the determination 
 moment of a force, to determine mx(mkυk) we must project vector 

mkυk on plane Oyz, i.e., on axis y', and find the moment of the projection 
with respect to point O. We obtain mx(mkυk)=–(mkυkcosαk)zk. But 
υkcosαk=ωhkcosαk=ωxk as from Fig. 16.2 it is apparent that hkcosαk=xk. 
Consequently, taking the common multiplier outside of the parentheses, we 
find that 

( )x x k k k k k
k k

K m m m x z⎛ ⎞
= = − ω⎜ ⎟

⎝ ⎠
∑ ∑υ . 

The sum in the parentheses is the product of inertia Jxz. A similar 
expression is obtained for Ky, with yk substituted for xk. Finally, we obtain: 

,x xz y yzK J K J= − ω = − ω. (16.10) 

Thus, the angular momentum of a rotating body with respect to a 
centre O on the axis of rotation Oz is a vector KO whose projections on the 
x, y, z axes are given by the formulas (16.8) and (16.10). It will be observed 
that in

xz yz  

 the most general case vector KO is not directed along the axis of 
rotation Oz. But if the axis of rotation is, for point O, the principal axis of 
inertia of the body (in particular, the axis of symmetry), then J =J =0, and
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Kx=Ky=0 and KO=Kz. Conseq
its principal axis of inertia with respect to point 

uently, if a body rotates about an axis that is 
O (or about its axis of 

symmetry), then vector KO is directed along the axis of rotation and is 
equal in magnitude to Kz, i.e., to Jzω. 

 
3. Theorem of the change in the total angular momentum of a 

system (the principle of moments) 
 

The principle of moments, which was proved for a single particle, is 
valid for all the particles of a system. If, therefore, we consider a particle of 
mass mk and velocity υk belonging to a system, we have for that particle: 

[ ]( ) ( ) ( )O k k O k O k , e im
dt

= +m υ m F m F

where Fk
e and Fk

i are the resultants of all the external and internal forces 
acting on the particle. 

d

Writing such equations for all the particles of the system and adding 
them, we obtain: 

( ) ( ) (e i
O k k O k O k

k k k

d m
dt
⎡ ⎤

= +⎢ ⎥⎣ ⎦
∑ ∑ ∑m υ m F m F ) . 

But from the properties of the internal forces of a system, the last 
summation vanishes. Hence, taking into account Eq. (16.6), we obtain 
finally: 

( )eOd
=∑K mO k

kdt
F . (16.11) 

This equation states the following principle of moments for a 
system

ojecting both sides of Eq. (16.11) on a set of fixed axes Oxyz we 
obtain: 

: The derivative of the total angular momentum of a system about 
any fixed centre with respect to time is equal to the sum of the moments of 
all the external forces acting on that system about that centre. 

Pr

( ), ( ), ( )ye ex z e
x k y k z k

k k k

m m m
dt dt dt

= = =∑ ∑ ∑F F F . (16.12) 

Equations (16.12) express the principle of moments with respect to 
any fixed axis. 

dKdK dK
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The theorem just proved is widely used in studying the rotation of a 
body about a fixed axis, and also in the theory of gyroscopic motion and 
the theory of impact. This, however, is not all. It was proved in the course 
of kinematics that the most general motion of a body is a co
translation together with some pole and a rotation about that pole. If the 
pole i

investigated by applying the theorem of the motion of the 
centre

 of mass has the same 
form a

mbination of a 

s located in the centre of mass, the translational component of the 
motion can be 

 of mass, and the rotational component, by the theorem of moments. 
This indicates the theorem's importance in studying the motion of free 
bodies and, in particular, in studying plane motion. 

The principle of moments is also convenient in investigating the 
rotation of a system, because, analogous to the theorem of the change in 
linear momentum, it makes it possible to exclude from consideration all 
immediately unknown internal forces. 

Theorem of Moments With Respect to a Centre of Mass: For 
axes in translational motion together with the centre of mass of a system, 
the theorem of moments with respect to the centre

s with respect to a fixed, centre.  

( )eC
C k

k

d
dt

=∑K m F . (16.13) 

 
4. The law of conservation of the total angular momentum 

 
The following important corollaries can be derived from the 

principle of moments. 
(1) Let the sum 

system with respect to a centre O be zero: 

k
∑m F

a system be such that the sum of 
their moments with respect to any fixed axis Oz is zero: 

=∑

of the moments of all the external forces acting on a 

( ) 0O k = . e

It follows, then, from Eq. (16.11) that KO=const. Thus, if the sum of 
the moments of all external forces acting on a system taken with respect to 
any centre is zero, the total angular momentum of the system with respect 
to that centre is constant in magnitude and direction. 

(2) Let the external forces acting on 

( ) 0z k
k

m F . e
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It follows, then, from Eqs. (16.12) that Kz=const. Thus, if the sum of 
the moments of all the external forces acting on a system with respect to 
any ax

These conclusions express the law of conservation of the total 
angular momentum of a system. It follows from them that internal forces 
cannot change the total angular m

his leads us to the following conclusions: 
(a) If a system is non-dejormable (a rigid body), then Jz=const, 

whence ω=const. That is, a rigid body will rotate about a fixed axis with a 

(b) If a system is deformable, it will have particles which, under the 
action of internal (or external) forces, may move away from the axis, 
thereby increasing  Jz. But as 
Jzω=c

ro, we have 

is is zero, the total angular momentum of the system with respect to 
that axis is constant. 

omentum of a system. 
Rotating Systems. Consider a system rotating about an axis Oz 

which is fixed or passes through the centre of mass. By Eq. (16.8), Kz=Jzω, 
and if  

( ) 0e
O k

k
=m F . 

then 

∑

constzJ ω= . 

T

constant angular velocity. 

 Jz, or approach the axis, thereby decreasing
onst, the angular velocity of the system will decrease as the moment 

of inertia increases, and increase as the moment of inertia decreases. Thus, 
the action of internal forces can change the angular velocity of a rotating 
system, as the constancy of Kz does not, in the general case, mean the 
constancy of ω. 

 
5. Rotation of a rigid body 

 
Let there be a system of forces F1

e, F2
e, ..., Fn

e acting on a rigid body 
with a fixed axis of rotation z. Also acting on the body are the reactions RA  
and RB of the bearings. As the moments of forces RA  and RB with respect 
to the axis are ze

ez
z

dK M
dt

= , 

where 
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( )e e
z z k

k
M m=∑ F . 

We shall call the quantity Mz
e the turning moment, or torque. 

Substituting the expression Kz=Jzω into the foregoing equation, we 
obtain: 

2

2
e

z z
de

z z
dJ M
dt
ω
=  J M or  

dt
ϕ
= . (16.14) 

on of a 
rigid b

f a body with respect to its axis of rotation and its angular 
acceleration is equal to the turning moment: 

Eq. (16.14) is the differential equation of the rotational moti
ody. It follows from the equation that the product of the moment of 

inertia o

e
z zJ Mε = . (16.15) 

slational motion, i.e., it is the 

Note th

 
 

 of a body is taken as the pole and the position of the body 
is defined by coordin y is depicted as 
intersected by a plane parallel to the 
point 

Equation (16.15) shows that, for a given torque Mz
e, the greater the 

moment of inertia of a body, the less the angular velocity, and vice versa. 
Thus, we see that in rotational motion the moment of inertia of a body 
actually plays the same role as mass in tran
measure of a body's inertia in rotational motion. 

e following special cases: 
(1) If Mz

e=0, ω=const, i.e., the rotation is uniform; 
(2) If Mz

e=const, ε=const., i.e., the rotation is uniformly variable. 
Eq. (16.14) is analogous in form to the differential equation of 

rectilinear motion of a particle; therefore, the methods of integration are 
also analogous. 

 
6. Plane Motion of a Rigid Body

The position of a body performing plane motion is specified at any 
instant by the position of any pole and the angle of rotation of the body 
about that pole. Dynamical problems are much more simple solved if the 
centre of mass С

ates xC, yC, and angle φ (the bod
plane of motion and passing through 

C). 
Let there be acting on the body a coplanar system of external forces 

F1
e, F2

e, ..., Fn
e. The equation of motion of point С can be found from the 

theorem of the motion of centre of mass: 

 95



e
C km =∑Fa , (16.16) 

k

and the rotation about С is given by Eq. (16.14), since the theorem from 
which it was derived is also valid for the motion of a system about the 
centre of mass. Finally, after projecting both sides of Eq. (16.16) on the 
coordinate axes, 

( )ema F ma F J m= = ε =∑ ∑ ∑ F , (16.17) 

we obtain: 

, ,e e
Cx kx Cy ky C C kz

k k k

or 
2 2 2

,eCd x dm F m=∑2 2 2, ( )e eC
kx ky C C kz

k k k

y dF J m
dt dt dt

ϕ
= =∑ ∑ F . (16.18) 

Eqs. (16.18) are the differential equations of plane motion of a rigid 
y. With their help we can develop the equation of motion of a body if 

the forces are given or we can determine the principal vector and principal 
moment of the acting forces if the law of motion is known. 
 

ll now were based on equations derived either directly from Newton's 
laws or from the general the re corollaries of those laws. 
However, the equa  conditions of a 
mechanical system can also be obt
propo

al and internal forces Fk  and 
Fk  (which include both active forces and the reactions of constraints), 
whic  impart it an acc o an inertial reference 
frame. 

Let us introduce the quantity 

bod

LECTURE 17 
D'ALEMBERT'S PRINCIPLE 

 
All the methods of solving the problems of dynamics examined up 

ti
orems, which a

tions of motion or equilibrium
ained on the basis of other general 

sitions called the principles of mechanics. We shall see that in many 
cases application of those principles offers better methods of problem 
solutions. In this chapter we shall examine one of the general principles of 
mechanics known as D'Alembert's principle. 

 
1. D'Alembert's principle 

 
Let there be a system of n material particles. Selecting any particle of 

mass mk, assume it to be acted upon by extern e

i

eleration ak with respect th
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k k km= − a , (17.1) 

with the dimension of force. The vector quantity equal in magnitude to the 
product of the particle's mass and acceleration and directed in the opposite 
sense of the acceleration is called the force of inertia of that particle 
(some

Φ

times the D'Alembert inertia fo
Motion of a particle, we 

rce). 
then find, satisfies the following 

D'Alembert's p

Transferring m
into a

ilarly for all the particles of the system, we arrive at 
the following result, which expresses D'Alembert's principle for a 
system

rinciple for a material particle: If, at any moment of time, 
to the effective forces Fk

e and Fk
i acting on the particle is added the inertia 

force Φk, the resultant force system will be in equilibrium, i.e., 

0e i
k k k+ + =Φ F F , (17.2) 

It will be readily observed that D'Alembert's principle is equivalent 
to Newton's second law, and vice versa. For Newton's second law gives for 
this particle  

e i
k k k km = +F Fa . 

kak to the right-hand side of the equation, and taking 
ccount the notation (17.1), we arrive at Eq. (17.2). Conversely, by 

transferring Fk
i to the other side of Eq. (17.2), and taking into account 

(17.1), we obtain the formula expressing Newton's second law. 
Reasoning sim

: If, at any moment of time, to the effective external and internal 
forces acting on every particle of a system are added the respective inertia 
forces, the resultant force system will be in equilibrium, and the equations 
of statics will apply to it. 

Mathematically D'Alembert's principle is expressed by a set of n 
simultaneous vector equations of the form (17.2) which, apparently, are 
equivalent to the differential equations of motion of a system. 

The value of D'Alembert's principle is that, when directly applied to 
problems of dynamics, the equations of motion of a system can be written 
in the form of the well-known equations of equilibrium; this makes for 
uniformity in the approach to problem solutions and usually greatly 
simplifies the computations. Furthermore, when used in conjunction with 
the principle of virtual displacement, which will be examined in the 
following chapter, D'Alembert's principle yields a new general method of 
solution of problems of dynamics. 

In applying D'Alembert's principle it should be remembered that, like 
the fundamental law of dynamics, it refers to motion considered with 
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respect to an inertial frame of reference. That means that acting on the 
particles of the mechanical system whose motion is being investigated are 
only the external and internal forces Fk

e and Fk
i that appear as a 

consequence of the interactions of the particles of the system among 
themselves and with bodies not belonging to the system; it is under the 
action of those forces that the particles of the system are moving with their 
respective accelerations ak. The inertia forces mentioned in D'Alembert's 
principle do not act on the moving particles [otherwise, by Eqs. (17.2), the 
points would be at rest or in uniform motion in which case, as is apparent 
from Eq. (17.1), there would be no inertia forces]. The introduction of 
inertia forces is but a device making it possible to examine the equations of 
dynamics by the simpler methods of statics. 

We know from statics that the geometrical sum of balanced forces 
and the sum of their moments with respect to any centre О are zero; we 
know, further, from the principle of solidification that this holds not only 
for forces acting on a rigid body but for any deformable system. Thus, 
according to D'Alembert's principle, we must have: 

( )

( )

0

( ) ( ) ( ) 0

k k k
k

e i
O k O k O k

k

+ + =e i

+ + =∑

Φ F F

m Φ m F m F
, (17.3) 

Let us introduce the following notation: 

∑

, (k O O
k k

Φ= =∑ ∑Φ Φ M m Φ )k , (17.4) 

The quantities Φ and MO
Φ are respectivel

inertia forces and their principal moment with respect to a centre O. 
Takin l forces and the sum of their 
moments are each zer

O+ = +∑ ∑F Φ m F M

equations expressing the theorems of the change in the momentum and the 
total angular momentum of a system, diff

y the principal vector of the 

g into account that the sum of the interna
o, we obtain: 

0, ( ) 0e e
k O k

k

Φ = . (17.5) 
k

The use of Eqs. (17.5), which follow from D'Alembert's principle, 
simplifies the process of problem solution because the equations do not 
contain the internal forces. Actually, Eqs. (17.5) are equivalent to the 

ering from them only in form. 
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Eqs. (17.5) are especially convenient in investigating the motion of a 
rigid body or a system of rigid bodies. For the complete investigation of 
any deformable system these equations, however, are insufficient. 

For the projections on a set of coordinate axes, Eqs. (17.5) give 
equations analogous to the corresponding equations of statics. To use these 
equations for solving problems we must know the principal vector and the 
princi

 body 
 

 
rigid body can be replaced by a single force equal to Φ and applied at the 
centre O, and a couple of moment MO . The principal vector of a system, it 
will b

equal to the product of th
centre of mass, and is opposite in direction to the acceleration. 

pal moment of the inertia forces. 
 

2. The principal vector and the principal moment of the inertia forces 
of a rigid

It follows from Eqs. (17.4) that a system of inertia forces applied to a

Φ

e recalled, does not depend on the centre of reduction and can be 
computed at once. Taking into account Eq. (17.1), we will have: 

k k C
k

m M= − = −∑Φ a a . (17.6) 

Thus, the principal vector of the inertia forces of a moving body is 
e mass of the body and the acceleration of its 

If we resolve the acceleration aC into its tangential and normal 
components, then vector Φ will resolve into components 

n,C n CM Mτ = − = −Φa a . (17.7) 

Let us determine the principal moment of the 

τΦ

inertia forces for 
particular types of motion. 

(1) Translational motio
its cen

and Eq. (17.5) gives C=0. 
Thus, in translational motion, the inertia forces of a rigid body can 

be reduced to a single resultant Φ through the centre of mass of the body. 
 a body have a plane of symmetry, and let it be 

movin
f 

mass C, in that plane. 

n. In this case a body has no rotation about 
tre of mass C, from which we conclude that  

e∑ ( ) 0O k
k

=m F , 

M

(2) Plane motion. Let
g parallel to the plane. By virtue of symmetry, the principal vector 

and the resultant couple of inertia forces lie, together with the centre o
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Therefore, placing the centre of reduction in point C, we obtain from 
Eq. (17.5)  

( )e
O O k
Φ = −∑M m F . 

k

On the other hand  

( )e
O k C

k
J=∑m F ε . 

his that We conclude from t

C CM JΦ = − ε . (17.8) 

Thus, in such motion a system of inertia forces can be reduced to a 
)] applied at the centre of mass С and a couple 

in the plane of sy
The minus sign shows that the m
the an

d consequently, Φ=0. 

resultant force Φ [Eq. (17.6
mmetry of the body whose moment is given by Eq. (17.8). 

oment M Φ is in the opposite direction of C
gular acceleration of the body.  
(3) Rotation about an axis through the centre of mass. Let a body 

have a plane of symmetry, and let the axis of rotation Cz be normal to the 
plane through the centre of mass. This case will thus be a particular case of 
the previous motion. But here aC=0, an

Thus, in this case a system of inertia forces can be reduced to a 
couple in the plane of symmetry of the body of moment 

z zM JΦ = − ε . (17.9) 

In applying Eqs. (17.6) and (17.8) to problem solutions, the 
magnitudes of the respective quantities are computed and the directions are 
shown in a diagram. 
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